Current understanding of chemotherapy-induced peripheral neuropathy (literature review)
- Authors: Tikhonova O.A.1, Druzhinin D.S.2, Tynterova A.M.1, Reverchuk I.V.1
-
Affiliations:
- Imannuel Kant Baltic Federal University
- Yaroslavl State Medical University
- Issue: Vol 13, No 1 (2023)
- Pages: 10-21
- Section: LECTURES AND REVIEWS
- Published: 25.03.2023
- URL: https://nmb.abvpress.ru/jour/article/view/522
- DOI: https://doi.org/10.17650/2222-8721-2023-13-1-10-21
- ID: 522
Cite item
Full Text
Abstract
This review focuses on chemotherapy-induced polyneuropathy, which is a fairly common side effect and affects not only the quality of life of patients with malignancies, but can also lead to a change in patient management tactics, namely dose modification, delay of drug administration to complete cessation of treatment, which threatens the life of the patient. Chemotherapy-induced polyneuropathy is based on different mechanisms of damaging effects depending on the type of cytotoxic agent. The most neurotoxic drugs are platinum drugs, taxanes, periwinkle alkaloids, bortezomib, and thalidomide. As a result of neurotoxic effects, damage occurs to thin and thick fibers of peripheral nerves. However, it is still a mystery why one patient develops manifestations of neurotoxicity and another does not. Therefore, the modern medical community is faced with the urgent question of further study of the mechanisms of development, risk factors, as well as the search for biomarkers and the development of prevention and treatment of chemotherapy-induced polyneuropathy. The results of studies on the mechanism of onset, clinic, diagnosis, prevention and treatment of chemotherapy-induced polyneuropathies are summarized.
About the authors
O. A. Tikhonova
Imannuel Kant Baltic Federal University
Author for correspondence.
Email: offelia78@mail.ru
ORCID iD: 0000-0002-1796-0193
Оlga Alekseevna Tikhonova,
14 Aleksandra Nevskogo St., Kaliningrad 236016
Russian FederationD. S. Druzhinin
Yaroslavl State Medical University
Email: fake@neicon.ru
ORCID iD: 0000-0002-6244-0867
5 Revolutsionnaya St., Yaroslavl 150000
Russian FederationA. M. Tynterova
Imannuel Kant Baltic Federal University
Email: fake@neicon.ru
ORCID iD: 0000-0003-1743-4713
14 Aleksandra Nevskogo St., Kaliningrad 236016
Russian FederationI. V. Reverchuk
Imannuel Kant Baltic Federal University
Email: fake@neicon.ru
ORCID iD: 0000-0002-3498-9094
14 Aleksandra Nevskogo St., Kaliningrad 236016
Russian FederationReferences
- Miller K.D., Nogueira L., Mariotto A. B. et al. Cancer treatment and survivorship statistics, 2019. Cancer J Clin 2019;69(5):363–85. doi: 10.3322/caac.21565
- Molassiotis A., Cheng H. L., Lopez V. et al. Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer 2019;19(1):1–19. doi: 10.1186/s12885-019-5302-4
- Banach M., Juranek J.K., Zygulska A.L. Chemotherapy-induced neuropathies – a growing problem for patients and health care providers. Brain Behav 2017;7(1):e00558. doi: 10.1002/brb3.558
- Cavaletti G., Alberti P., Argyriou A.A. et al. Chemotherapy-induced peripheral neurotoxicity: a multifaceted, still unsolved issue. J Periph Nerv Sys 2019;24:S6–S12. doi: 10.1111/jns.12337
- Seretny M., Currie G.L., Sena E.S., et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 2014;155(12):2461–70. doi: 10.1016/j.pain.2014.09.020
- Jordan B., Jahn F., Sauer S. et al. Prevention and management of chemotherapy-induced polyneuropathy. Breast Care 2019;14(2): 79–84. doi: 10.1159/000499599
- Ghoreishi Z., Keshavarz S., Asghari Jafarabadi M. et al. Risk factors for paclitaxel-induced peripheral neuropathy in patients with breast cancer. BMC Cancer 2018;18(1):1–6. doi: 10.1186/s12885-018-4869-5
- Hershman D.L., Till C., Wright J.D. et al. Comorbidities and risk of chemotherapy-induced peripheral neuropathy among participants 65 years or older in southwest oncology group clinical trials. J Clin Oncol 2016;34(25):3014. doi: 10.1200/JCO.2015.66.2346
- Saito Y., Takekuma Y., Shinagawa N. et al. Evaluation of risk factors associated with carboplatin and nab-paclitaxel treatment suspension in patients with non-small cell lung cancer. Sup Care Cancer 2022;30(5):4081–8. doi: 10.1007/s00520-021-06757-x
- Shah A., Hoffman E.M., Mauermann M.L. et al. Incidence and disease burden of chemotherapy-induced peripheral neuropathy in a population-based cohort. J Neurol Neurosurg Psychiatry 2018;89(6):636–41. doi: 10.1136/jnnp-2017-317215
- Inada M., Sato M., Morita S. et al. Associations between oxaliplatin-induced peripheral neuropathy and polymorphisms of the ERCC1 and GSTP1 genes. Int J Clin Pharmacol Ther 2010;48(11):729–34. doi: 10.5414/cpp48729
- Apellániz-Ruiz M., Lee M.Y., Sánchez-Barroso L. et al. Wholeexome sequencing reveals defective CYP3A4 variants predictive of paclitaxel dose-limiting neuropathy CYP3A4 variants and paclitaxel dose-limiting neuropathy. Clin Cancer Res 2015;21(2):322–8. doi: 10.1158/1078-0432.CCR-14-1758
- Nakamura T., Hashiguchi A., Suzuki S. et al. Vincristine exacerbates asymptomatic Charcot–Marie–Tooth disease with a novel EGR2 mutation. Neurogenetics 2012;13(1):77–82. doi: 10.1007/s10048-012-0313-1
- Guijosa A., Freyria A., Espinosa-Fernandez J.R. et al. Pharmacogenetics of taxane-induced neurotoxicity in breast cancer: Systematic review and meta-analysis. Clin Transl Sci 2022;15(10):2403–36. doi: 10.1111/cts.13370
- Argyriou A.A., Bruna J., Genazzani A.A. et al. Chemotherapyinduced peripheral neurotoxicity: management informed by pharmacogenetics. Nat Rev Neurol 2017;13(8):492–504. doi: 10.1038/nrneurol.2017.88
- Zajączkowska R., Kocot-Kępska M., Leppert W. et al. Mechanisms of chemotherapy-induced peripheral neuropathy. Int J Mol Sci 2019;20(6):1451. doi: 10.3390/ijms20061451
- Rabik C.A., Dolan M.E. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 2007;33(1):9–23. doi: 10.1016/j.ctrv.2006.09.006
- Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 2014;740:364–78. doi: 10.1016/j.ejphar.2014.07.025
- Was H., Borkowska A., Bagues A. et al. Mechanisms of chemotherapy-induced neurotoxicity. Front Pharmacol 2022;13:750507. doi: 10.3389/fphar.2022.750507
- Zheng H., Xiao W.H., Bennett G.J. Functional deficits in peripheral nerve mitochondria in rats with paclitaxeland oxaliplatin-evoked painful peripheral neuropathy. Exp Neurol 2011;232(2):154–61. doi: 10.3389/fphar.2022.750507
- Chukyo A., Chiba T., Kambe T. et al. Oxaliplatin-induced changes in expression of transient receptor potential channels in the dorsal root ganglion as a neuropathic mechanism for cold hypersensitivity. Neuropeptides 2018;67:95–101. doi: 10.1016/j.npep.2017.12.002
- Warwick R., Hanani M. The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur J Pain 2013;17(4):571–80. doi: 10.1002/j.1532-2149.2012.00219.x
- Schmitt L.I., Leo M., Kutritz A. et al. Activation and functional modulation of satellite glial cells by oxaliplatin lead to hyperexcitability of sensory neurons in vitro. Mol Cell Neurosci 2020;105:103499. doi: 10.1016/j.mcn.2020.103499
- Makker P.G., Duffy S.S., Lees J.G. et al. Characterisation of immune and neuroinflammatory changes associated with chemotherapy-induced peripheral neuropathy. PloS One 2017;12(1):e0170814. doi: 10.1371/journal.pone.0170814
- Robinson C.R., Zhang H., Dougherty P.M. Astrocytes, but not microglia, are activated in oxaliplatin and bortezomibinduced peripheral neuropathy in the rat. Neurosci 2014;274:308–17. doi: 10.1016/j.neuroscience.2014.05.051
- Velasco R., Bruna J. Taxane-induced peripheral neurotoxicity. Toxics 2015;3(2):152–69. doi: 10.3390/toxics3020152
- Xiao W.H., Zheng H., Zheng F.Y. et al. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. Neurosci 2011;199:461–9. doi: 10.1016/j.neuroscience.2011.10.010
- Loprinzi C.L., Reeves B.N., Dakhil S.R. et al. Natural history of paclitaxel-associated acute pain syndrome: prospective cohort study NCCTG N08C1. J Clin Oncol 2011;29(11):1472. doi: 10.1200/JCO.2010.33.0308
- Windebank A.J., Grisold W. Chemotherapy-induced neuropathy. J Periph Nerv Sys 2008;13(1):27–46. doi: 10.1111/j.1529-8027.2008.00156.x
- Triarico S., Romano A., Attinà G. et al. Vincristine-induced peripheral neuropathy (VIPN) in pediatric tumors: Mechanisms, risk factors, strategies of prevention and treatment. Int J Mol Sci 2021;22(8):4112. doi: 10.3390/ijms22084112
- Amirkhanloo F., Karimi G., Yousefi-Manesh H. et al. The protective effect of modafinil on vincristine-induced peripheral neuropathy in rats: A possible role for TRPA1 receptors. Basic Clin Pharmacol Toxicol 2020;127(5):405–18. doi: 10.1111/bcpt.13454
- Liang Y., Ma S., Zhang Y. et al. IL-1β and TLR4 signaling are involved in the aggravated murine acute graft-versus-host disease caused by delayed bortezomib administration. J Immunol 2014;192(3):1277–85. doi: 10.4049/jimmunol.1203428
- Stockstill K., Doyle T.M., Yan X. et al. Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. J Exp Med 2018;215(5):1301–13. doi: 10.1084/jem.20170584
- Argyriou A.A., Iconomou G., Kalofonos H.P. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 2008;112(5):1593–9. doi: 10.1182/blood-2008-04-149385
- Mohty B., El-Cheikh J., Yakoub-Agha I. et al. Peripheral neuropathy and new treatments for multiple myeloma: background and practical recommendations. Haematologica 2010;95(2):311. doi: 10.3324/haematol.2009.012674
- Ventzel L., Jensen A.B., Jensen A.R. et al. Chemotherapy-induced pain and neuropathy: a prospective study in patients treated with adjuvant oxaliplatin or docetaxel. Pain 2016;157(3):560–8. doi: 10.1097/j.pain.0000000000000404
- Ta L.E., Espeset L., Podratz J. et al. Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum – DNA binding. Neurotoxicology 2006;27(6):992–1002. doi: 10.1016/j.neuro.2006.04.010
- Lucchetta M., Lonardi S., Bergamo F. et al. Incidence of atypical acute nerve hyperexcitability symptoms in oxaliplatin-treated patients with colorectal cancer. Cancer Chemother Pharmacol 2012;70(6):899–902. doi: 10.1007/s00280-012-2006-8
- Brewer J.R., Morrison G., Dolan M.E. et al. Chemotherapyinduced peripheral neuropathy: Current status and progress. Gynecol Oncol 2016;140(1):176–83. doi: 10.1016/j.ygyno.2015.11.011
- Cavaletti G., Nobile-Orazio E. Bortezomib-induced peripheral neurotoxicity: still far from a painless gain. Haematologica 2007;92(10):1308–10. doi: 10.3324/haematol.11752
- Kolb N.A., Smith A.G., Singleton J.R. et al. The association of chemotherapy-induced peripheral neuropathy symptoms and the risk of falling. JAMA Neurol 2016;73(7):860–6. doi: 10.1001/jamaneurol.2016.0383
- Common terminology criteria for adverse events (CTCAE) version 5.0. National Institutes of Health Bethesda, 2017. Available at: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf.
- Frigeni B., Piatti M., Lanzani F. et al. Chemotherapy-induced peripheral neurotoxicity can be misdiagnosed by the National Cancer Institute Common Toxicity scale. J Periph Nerv Sys 2011;16(3):228–36. doi: 10.1111/j.1529-8027.2011.00351.x
- Postma T.J., Aaronson N.K., Heimans J.J. et al. The development of an EORTC quality of life questionnaire to assess chemotherapy-induced peripheral neuropathy: the QLQ-CIPN20. Eur J Cancer 2005;41(8):1135–9. doi: 10.1016/j.ejca.2005.02.012
- Pachman D.R., Qin R., Seisler D.K. et al. Clinical course of oxaliplatin-induced neuropathy: results from the randomized phase III trial N08CB (Alliance). J Clin Oncol 2015;33(30):3416. doi: 10.1200/JCO.2014.58.8533
- Sun B., Li Y., Liu L. et al. SFN-SIQ, SFNSL and skin biopsy of 55 cases with small fibre involvement. Int J Neurosci 2018;128(5):442–8. doi: 10.1080/00207454.2017.1398152
- Lukashenko M.V., Gavrilova N.Y., Bregovskaya A.V. et al. Corneal confocal microscopy in the diagnosis of small fiber neuropathy: faster, easier, and more efficient than skin biopsy? Pathophysiology 2021;29(1):1–8. doi: 10.3390/pathophysiology29010001
- Burgess J., Ferdousi M., Gosal D. et al. Chemotherapy-induced peripheral neuropathy: epidemiology, pathomechanisms and treatment. Oncol Ther 2021;9(2):385–450. doi: 10.1007/s40487-021-00168-y
- Thaisetthawatkul P., Fernandes Filho J.A., Herrmann D.N. Contribution of QSART to the diagnosis of small fiber neuropathy. Muscle Nerve 2013;48(6):883–8. doi: 10.1002/mus.23891
- Raasing L.R., Vogels O. J., Veltkamp M. et al. Current view of diagnosing small fiber neuropathy. J Neuromusc Dis 2021;8(2):185–207. doi: 10.3233/JND-200490
- Terkelsen A.J., Karlsson P., Lauria G. et al. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol 2017;16(11):934–44. doi: 10.1016/S1474-4422(17)30329-0
- Illias A.M., Gist A. C., Zhang H. et al. Chemokine CCL2 and its receptor CCR2 in the dorsal root ganglion contribute to oxaliplatininduced mechanical hypersensitivity. Pain 2018;159(7):1308. doi: 10.1097/j.pain.0000000000001212
- Wang X.M., Lehky T.J., Brell J.M. et al. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 2012;59(1):3–9. doi: 10.1016/j.cyto.2012.03.027
- Fumagalli G., Monza L., Cavaletti G. et al. Neuroinflammatory process involved in different preclinical models of chemotherapyinduced peripheral neuropathy. Front Immunol 2021;11:626687. doi: 10.3389/fimmu.2020.626687
- Delaby C., Alcolea D., Carmona-Iragui M. et al. Differential levels of neurofilament light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders. Sci Rep 2020;10(1):1–8. doi: 10.1038/s41598-020-66090-x
- Huehnchen P., Schinke C., Bangemann N. et al. Neurofilament proteins as a potential biomarker in chemotherapy-induced polyneuropathy. JCI Insight 2022;7(6). doi: 10.1172/jci.insight.154395
- Szudy-Szczyrek A., Mlak R., Bury-Kamińska M. et al. Serum brain-derived neurotrophic factor (BDNF) concentration predicts polyneuropathy and overall survival in multiple myeloma patients. Brit J Haematol 2020;191(1):77–89. doi: 10.1111/bjh.16862
- De Santis S., Pace A., Bove L. et al. Patients treated with antitumor drugs displaying neurological deficits are characterized by a low circulating level of nerve growth factor. Clin Cancer Res 2000;6(1):90–5.
- Youk J., Kim Y.S., Lim J.A. et al. Depletion of nerve growth factor in chemotherapy-induced peripheral neuropathy associated with hematologic malignancies. PLoS One 2017;12(8):e0183491. doi: 10.1371/journal.pone.0183491
- Majithia N., Temkin S.M., Ruddy K.J. et al. National Cancer Institute-supported chemotherapy-induced peripheral neuropathy trials: outcomes and lessons. Supp Care Cancer 2016;24(3):1439–47. doi: 10.1007/s00520-015-3063-4
- Smith E.M., Pang H., Cirrincione C. et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapyinduced painful peripheral neuropathy: a randomized clinical trial. JAMA 2013;309(13):1359–67. doi: 10.1001/jama.2013.2813
- Loprinzi C.L., Lacchetti C., Dworkin R.H. et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. ASCO 2020. doi: 10.1200/JCO.20.01399
Supplementary files



