Phenotypic variability in TRPV4-associated neuropathies and neuronopathies: a case series
- Authors: Murtazina A.F.1, Tsabay P.N.1, Rudenskaya G.E.1, Bessonova L.A.1, Bostanova F.M.1, Guseva D.M.1, Sharkova I.V.1, Shchagina O.A.1, Orlova A.A.1, Ryzhkova O.P.1, Markova T.V.1, Kuchina A.S.1, Nikitin S.S.1, Dadali E.L.1
-
Affiliations:
- N. P. Bochkov Medical Genetic Research Center
- Issue: Vol 13, No 2 (2023)
- Pages: 42-55
- Section: ORIGINAL REPORTS
- Published: 15.06.2023
- URL: https://nmb.abvpress.ru/jour/article/view/542
- DOI: https://doi.org/10.17650/2222-8721-2023-13-2-42-55
- ID: 542
Cite item
Full Text
Abstract
TRPV4‑associated neuromuscular diseases represent a clinical spectrum of neuropathies and motor neuron disorders. To date, 3 phenotypic forms are distinguished. There are Charcot–Marie–Tooth disease type 2C, distal hereditary motor neuropathy type 8 (DHMN8), scapulo‑peroneal spinal muscular atrophy (SPSMA). Here we report 3 families with DNMN8 and one family with SPSMA. In all cases, DNA‑analysis revealed single nucleotide variants in the TRPV4 gene previously reported as pathogenic. In 3 probands, a combination of signs of both motor and motor‑sensory neuropathies led to difficulties in the establishment of the clinical diagnosis. Patients had mild sensory disturbances in the feet, but in all of these cases nerve conduction study revealed normal sensory nerve action potentials. Considering the prevailing signs of motor neuropathy, these patients were diagnosed with DNMN8. Clinical signs of sensory disturbances are regarded as not contradicting the diagnosis, since they can be observed in various forms of distal motor neuropathies. The clinical features of SPSMA in one patient corresponded to those previously described in the literature. The involvement of the shoulder girdle muscles and the peroneal muscles and neurogenic changes in needle electromyography allow suspecting SPSMA clinically. A distinctive features of TRPV4‑associated neuromuscular diseases are the vocal cords paresis, sensorineural hearing loss and respiratory failure, however they are not obligatory according to our clinical reports.
About the authors
A. F. Murtazina
N. P. Bochkov Medical Genetic Research Center
Author for correspondence.
Email: fake@neicon.ru
Aysylu Fanzirovna Murtazina
1 Moskvorechye St., Moscow 115522
Russian FederationP. N. Tsabay
N. P. Bochkov Medical Genetic Research Center
Email: fake@neicon.ru
1 Moskvorechye St., Moscow 115522
Russian FederationG. E. Rudenskaya
N. P. Bochkov Medical Genetic Research Center
Email: fake@neicon.ru
1 Moskvorechye St., Moscow 115522
Russian FederationL. A. Bessonova
N. P. Bochkov Medical Genetic Research Center
Email: fake@neicon.ru
1 Moskvorechye St., Moscow 115522
Russian FederationF. M. Bostanova
N. P. Bochkov Medical Genetic Research Center
Email: fake@neicon.ru
1 Moskvorechye St., Moscow 115522
Russian FederationD. M. Guseva
N. P. Bochkov Medical Genetic Research Center
Email: fake@neicon.ru
1 Moskvorechye St., Moscow 115522
Russian FederationI. V. Sharkova
N. P. Bochkov Medical Genetic Research Center
Email: fake@neicon.ru
1 Moskvorechye St., Moscow 115522
Russian FederationO. A. Shchagina
N. P. Bochkov Medical Genetic Research Center
Email: fake@neicon.ru
1 Moskvorechye St., Moscow 115522
Russian FederationA. A. Orlova
N. P. Bochkov Medical Genetic Research Center
Email: fake@neicon.ru
1 Moskvorechye St., Moscow 115522
Russian FederationO. P. Ryzhkova
N. P. Bochkov Medical Genetic Research Center
Email: fake@neicon.ru
1 Moskvorechye St., Moscow 115522
Russian FederationT. V. Markova
N. P. Bochkov Medical Genetic Research Center
Email: fake@neicon.ru
1 Moskvorechye St., Moscow 115522
Russian FederationA. S. Kuchina
N. P. Bochkov Medical Genetic Research Center
Email: fake@neicon.ru
1 Moskvorechye St., Moscow 115522
Russian FederationS. S. Nikitin
N. P. Bochkov Medical Genetic Research Center
Email: fake@neicon.ru
1 Moskvorechye St., Moscow 115522
Russian FederationE. L. Dadali
N. P. Bochkov Medical Genetic Research Center
Email: fake@neicon.ru
1 Moskvorechye St., Moscow 115522
Russian FederationReferences
- Auer-Grumbach M., Olschewski A., Papic L. et al. Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 2010;42(2): 160–4. doi: 10.1038/ng.508
- Zimon M., Baets J., Auer-Grumbach M. et al. Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies. Brain 2010;133(Pt 6):1798–809. doi: 10.1093/brain/awq109
- Fiorillo C., Moro F., Brisca G. et al. TRPV4 mutations in children with congenital distal spinal muscular atrophy. Neurogenetics 2012;13(3):195–203. doi: 10.1007/s10048-012-0328-7
- Chen D.H., Sul Y., Weiss M. et al. CMT2C with vocal cord paresis associated with short stature and mutations in the TRPV4 gene. Neurology 2010;75(22):1968–75. doi: 10.1212/WNL.0b013e3181ffe4bb
- Aharoni S., Harlalka G., Offiah A. et al. Striking phenotypic variability in familial TRPV4-axonal neuropathy spectrum disorder. Am J Med Genet A 2011;155A(12):3153–6. doi: 10.1002/ajmg.a.34327
- Berciano J., Baets J., Gallardo E. et al. Reduced penetrance in hereditary motor neuropathy caused by TRPV4 Arg269Cys mutation. J Neurol 2011;258(8):1413–21. doi: 10.1007/s00415-011-5947-7
- Koutsis G., Lynch D., Manole A. et al. Charco–Marie–Tooth disease type 2C and scapuloperoneal muscular atrophy overlap syndrome in a patient with the R232C TRPV4 mutation. J Neurol 2015;262(8):1972–5. doi: 10.1007/s00415-015-7800-x
- Vill K., Kuhn M., Glaser D. et al. Long-term observations in an affected family with neurogenic scapuloperoneal syndrome caused by mutation R269C in the TRPV4 gene. Neuropediatrics 2015;46(4):282–6. doi: 10.1055/s-0035-1554100
- Jedrzejowska M., Debek E., Kowalczyk B. et al. The remarkable phenotypic variability of the p.Arg269HiS variant in the TRPV4 gene. Muscle Nerve 2019;59(1):129–33. doi: 10.1002/mus.26346
- Garcia-Elias A., Lorenzo I.M., Vicente R. et al. IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli viaa calmodulin-binding site. J Biol Chem 2008;283(46):31284–8. doi: 10.1074/jbc.C800184200
- Kottgen M., Buchholz B., Garcia-Gonzalez M.A. et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 2008;182(3):437–47. doi: 10.1083/jcb.200805124
- Donate-Macian P., Jungfleisch J., Perez-Vilaro G. et al. The TRPV4 channel links calcium influx to DDX3X activity and viral infectivity. Nat Commun 2018;9(1):2307. doi: 10.1038/s41467-018-04776-7
- Arniges M., Fernandez-Fernandez J.M., Albrecht N. et al. Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 2006;281(3):1580–6. doi: 10.1074/jbc.M511456200
- Takahashi N., Hamada-Nakahara S., Itoh Y. et al. TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P(2). Nat Commun 2014;5:4994. doi: 10.1038/ncomms5994
- Strotmann R., Schultz G., Plant T.D. Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J Biol Chem 2003;278(29):26541–9. doi: 10.1074/jbc.M302590200
- Stenson P.D., Ball E.V., Mort M. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 2003;21(6):577–81. doi: 10.1002/humu.10212
- Deng H.X., Klein C.J., Yan J. et al. Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 2010;42(2):165–9. doi: 10.1038/ng.509
- Landoure G., Zdebik A.A., Martinez T.L. et al. Mutations in TRPV4 cause Charcot–Marie–Tooth disease type 2C. Nat Genet 2010;42(2):170–4. doi: 10.1038/ng.512
- Fecto F., Shi Y., Huda R. et al. Mutant TRPV4-mediated toxicity is linked to increased constitutive function in axonal neuropathies. J Biol Chem 2011;286(19):17281–91. doi: 10.1074/jbc.M111.237685
- Klein C.J., Shi Y., Fecto F. et al. TRPV4 mutations and cytotoxic hypercalcemia in axonal Charcot–Marie–Tooth neuropathies. Neurology 2011;76(10):887–94. doi: 10.1212/WNL.0b013e31820f2de3
- Sullivan J.M., Zimanyi C.M., Aisenberg W. et al. Novel mutations highlight the key role of the ankyrin repeat domain in TRPV4-mediated neuropathy. Neurol Genet 2015;1(4):e29. doi: 10.1212/NXG.0000000000000029
- Taga A., Peyton M.A., Goretzki B. et al. TRPV4 mutations causing mixed neuropathy and skeletal phenotypes result in severe gain of function. Ann Clin Transl Neurol 2022;9(3):375–91. doi: 10.1002/acn3.51523
- Cho T.J., Matsumoto K., Fano V. et al. TRPV4-pathy manifesting both skeletal dysplasia and peripheral neuropathy: a report of three patients. Am J Med Genet A 2012;158A(4):795–802. doi: 10.1002/ajmg.a.35268
- Fawcett K.A., Murphy S.M., Polke J.M. et al. Comprehensive analysis of the TRPV4 gene in a large series of inherited neuropathies and controls. J Neurol Neurosurg Psychiatry 2012;83(12):1204–9. doi: 10.1136/jnnp-2012-303055
- Drew A.P., Zhu D., Kidambi A. et al. Improved inherited peripheral neuropathy genetic diagnosis by whole-exome sequencing. Mol Genet Genomic Med 2015;3(2):143–54. doi: 10.1002/mgg3.126
- Uchoa Cavalcanti E.B., Santos S.C.L., Martins C.E.S. et al. Char-cot-Marie-Tooth disease: Genetic profile of patients from a large Brazilian neuromuscular reference center. J Peripher Nerv Syst 2021;26(3):290–7. doi: 10.1111/jns.12458
- Volodarsky M., Kerkhof J., Stuart A. et al. Comprehensive genetic sequence and copy number analysis for Charcot–Marie–Tooth disease in a Canadian cohort of 2517 patients. J Med Genet 2021;58(4):284–8. doi: 10.1136/jmedgenet-2019-106641
- Dai J., Kim O.H., Cho T.J. et al. Novel and recurrent TRPV4 mutations and their association with distinct phenotypes within the TRPV4 dysplasia family. J Med Genet 2010;47(10):704–9. doi: 10.1136/jmg.2009.075358
- Markova T.V., Kenis V.M., Melchenko E.V. et al. Clinical and genetic characteristics of TRPV4-associated skeletal dysplasias in Russian patients. Meditsinskaya genetika = Medical Genetics 2022;21(4):25–37. (In Russ.). doi: 10.25557/2073-7998.2022.04.25-37
- Inada H., Procko E., Sotomayor M. et al. Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry 2012;51(31):6195–206. doi: 10.1021/bi300279b
- McCray B.A., Diehl E., Sullivan J.M. et al. Neuropathy-causing TRPV4 mutations disrupt TRPV4-RhoA interactions and impair neurite extension. Nat Commun 2021;12(1):1444. doi: 10.1038/s41467-021-21699-y
- Dyck P.J., Litchy W.J., Minnerath S. et al. Hereditary motor and sensory neuropathy with diaphragm and vocal cord paresis. Ann Neurol 1994;35(5):608–15. doi: 10.1002/ana.410350515
- Deng S., Feely S.M.E., Shi Y. et al. Incidence and clinical features of TRPV4-linked axonal neuropathies in a USA cohort of Char-cot–Marie–Tooth disease type 2. Neuromolecular Med 2020;22(1):68–72. doi: 10.1007/s12017-019-08564-4
- Fleury P., Hageman G. A dominantly inherited lower motor neuron disorder presenting at birth with associated arthrogryposis. J Neurol Neurosurg Psychiatry 1985;48(10):1037–48. doi: 10.1136/jnnp.48.10.1037
- Van der Vleuten A.J., van Ravenswaaij-Arts C.M., Frijns C.J. et al. Localisation of the gene for a dominant congenital spinal muscular atrophy predominantly affecting the lower limbs to chromosome 12q23–q24. Eur J Hum Genet 1998;6(4):376–82. doi: 10.1038/sj.ejhg.5200229
- Echaniz-Laguna A., Dubourg O., Carlier P. et al. Phenotypic spectrum and incidence of TRPV4 mutations in patients with inherited axonal neuropathy. Neurology 2014;82(21):1919–26. doi: 10.1212/WNL.0000000000000450
- Rossor A.M., Kalmar B., Greensmith L. et al. The distal hereditary motor neuropathies. J Neurol Neurosurg Psychiatry 2012;83(1): 6–14. doi: 10.1136/jnnp-2011-300952
- DeLong R., Siddique T. A large New England kindred with autosomal dominant neurogenic scapuloperoneal amyotrophy with unique features. Arch Neurol 1992;49(9):905–8. doi: 10.1001/archneur.1992.00530330027010
- McEntagart M. TRPV4 axonal neuropathy spectrum disorder. J Clin Neurosci 2012;19(7):927–33. doi: 10.1016/j.jocn.2011.12.003
- Biasini F., Portaro S., Mazzeo A. et al. TRPV4 related scapuloperoneal spinal muscular atrophy: Report of an Italian family and review of the literature. Neuromuscul Disord 2016;26(4–5):312–5. doi: 10.1016/j.nmd.2016.02.010
- Landoure G., Sullivan J.M., Johnson J.O. et al. Exome sequencing identifies a novel TRPV4 mutation in a CMT2C family. Neurology 2012;79(2):192–4. doi: 10.1212/WNL.0b013e31825f04b2
- Unger S., Lausch E., Stanzial F. et al. Fetal akinesia in metatropic dysplasia: The combined phenotype of chondrodysplasia and neuropathy? Am J Med Genet A 2011;155A(11):2860–4. doi: 10.1002/ajmg.a.34268
- Faye E., Modaff P., Pauli R. et al. Combined phenotypes of spondylometaphyseal dysplasia–Kozlowski type and Charcot–Marie– Tooth disease type 2C secondary to a TRPV4 pathogenic variant. Mol Syndromol 2019;10(3):154–60. doi: 10.1159/000495778
- Murtazina A.F., Shchagina O.A., Nikitin S.S. et al. Current view on phenotypic and genetic features of autosomal recessive inherited peripheral neuropathies. Annaly klinicheskoy i eksperimentalnoy nevrologii = Annals of Clinical and Experimental Neurology 2019;13(1):55–69. (In Russ.). doi: 10.25692/ACEN.2019.1.7
Supplementary files



