Molecular mechanism of neurodegeneration in spinal muscular atrophy
- Authors: Vlasenko A.I.1, Nazarov V.D.2, Lapin S.V.2, Mazing A.V.2, Surkova E.A.2, Blinova T.V.2, Topuzova M.P.1, Alekseeva T.M.1
-
Affiliations:
- V.A. Almazov National Medical Research Center, Ministry of Health of Russia
- I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
- Issue: Vol 14, No 3 (2024)
- Pages: 72-80
- Section: LECTURES AND REVIEWS
- Published: 18.09.2024
- URL: https://nmb.abvpress.ru/jour/article/view/621
- DOI: https://doi.org/10.17650/2222-8721-2024-14-3-72-80
- ID: 621
Cite item
Full Text
Abstract
In the last decade, pathogenetic methods for the treatment of spinal muscular atrophy 5q have been developed. These include increased expression of the SMN2 gene, correction of SMN2 splicing, or reexpression of the SMN1 gene. Despite the comprehension of the genetic causes of the disease and the existence of therapies, it is still not completely known which molecular mechanisms in SMN protein deficiency lead to the degeneration of motor neurons. Understanding the molecular pathways involved in the loss of motor neurons may help develop new therapeutic strategies. The article presents genetic and biochemical data that reveal the molecular mechanisms of neurodegeneration in spinal muscular atrophy 5q.
About the authors
A. I. Vlasenko
V.A. Almazov National Medical Research Center, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0003-3727-8017
2 Akkuratova St., Saint Petersburg 197341
Russian FederationV. D. Nazarov
I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Author for correspondence.
Email: nazarov19932@mail.ru
ORCID iD: 0000-0002-9354-8790
Vladimir Dmitrievich Nazarov
6–8 Lva Tolstogo St., Saint Petersburg 197022
Russian FederationS. V. Lapin
I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-4998-3699
6–8 Lva Tolstogo St., Saint Petersburg 197022
Russian FederationA. V. Mazing
I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-3055-6507
6–8 Lva Tolstogo St., Saint Petersburg 197022
Russian FederationE. A. Surkova
I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0001-8503-0759
6–8 Lva Tolstogo St., Saint Petersburg 197022
Russian FederationT. V. Blinova
I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0003-4896-3319
6–8 Lva Tolstogo St., Saint Petersburg 197022
Russian FederationM. P. Topuzova
V.A. Almazov National Medical Research Center, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-0175-3085
2 Akkuratova St., Saint Petersburg 197341
Russian FederationT. M. Alekseeva
V.A. Almazov National Medical Research Center, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-4441-1165
2 Akkuratova St., Saint Petersburg 197341
Russian FederationReferences
- Mercuri E., Sumner C., Muntoni F. et al. Spinal muscular atrophy. Nat Rev Dis Primers 2022;8(1):52. doi: 10.1038/s41572-022-00380-8
- López-Cortés A., Echeverría-Garcés G., Ramos-Medina M. Molecular pathogenesis and new therapeutic dimensions for spinal muscular atrophy. Biology 2022;11(6):894. doi: 10.3390/biology11060894
- Lefebvre S., Bürglen L., Reboullet S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995;80(1):155–65. doi: 10.1016/0092-8674(95)90460-3
- Farrar M., Kiernan M. The genetics of spinal muscular atrophy: progress and challenges. Neurotherapeutics 2015;12(2):290–302. doi: 10.1007/s13311-014-0314-x
- Fallini C., Bassel, G., Rossoll W. Spinal muscular atrophy: The role of SMN in axonal mRNA regulation. Brain Res 2012;1462:81–92.
- Hosseinibarkooie S., Schneider S., Wirth B. Advances in understanding the role of disease-associated proteins in spinal muscular atrophy. Expert Rev Proteomics 2017;14(7):581–92. doi: 10.1080/14789450.2017.1345631
- Lefebvre S., Sarret C. Pathogenesis and therapeutic targets in spinal muscular atrophy (SMA). Arch Pédiatrie 2020; 27(7):7S3–8. doi: 10.1016/S0929-693X(20)30269-4
- Chaytow H., Huang Y., Gillingwater T., Faller K. The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Mol Life Sci 2018;75:3877–94.
- Singh R., Howell M., Ottesen E., Singh N. Diverse role of survival motor neuron protein. Biochim Biophys Acta Gene Regul Mech 2017;1860(3):299–315. doi: 10.1016/j.bbagrm.2016.12.008
- Coady T., Lorson C. SMN in spinal muscular atrophy and snRNP biogenesis. Wiley Interdiscip Rev RNA 2011;2(4):546–64. doi: 10.1002/wrna.76
- Doktor T., Hua Y., Andersen H. et al. RNA-sequencing of a mousemodel of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns. Nucleic Acids Res 2017;45(1): 395–416. doi: 10.1093/nar/gkw731
- Lotti F., Imlach W., Saieva L. et al. An SMN-dependent U12 splicing event essential for motor circuit function. Cell 2012;151(2):440–54. doi: 10.1016/j.cell.2012.09.012
- Van Alstyne M., Lotti F., Dal Mas A. et al. Stasimon/Tmem41b localizes to mitochondria-associated ER membranes and is essential for mouse embryonic development. Biochem Biophys Res Commun 2018;506(3):463–70. doi: 10.1016/j.bbrc.2018.10.073
- Simon C., Van Alstyne M., Lotti F. et al. Stasimon contributes to the loss of sensory synapses and motor neuron death in a mouse model of spinal muscular atrophy. Cell 2019;29(12):3885–901. doi: 10.1016/j.celrep.2019.11.058
- Nazipova N.N. Diversity of non-coding RNAs in eukaryotic genomes. Matematicheskaya biologiya i bioinformatika = Mathematical Biology and Bioinformatics 2021;16(2):256–98. (In Russ.). doi: 10.17537/2021.16.256
- Pellizzoni L., Baccon J., Charroux B., Dreyfuss G. The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Curr Biol 2001;11(14):1079–88. doi: 10.1016/S0960-9822(01)00316-5
- Piazzon N., Schlotter F., Lefebvre S. et al. Implication of the SMN complex in the biogenesis and steady state level of the signal recognition particle. Nucleic Acids Res 2013;41(2):1255–72. doi: 10.1093/nar/gks1224
- Morris G. The Cajal body. Biochim Biophys Acta Mol Cell Res 2008;1783(11):2108–15. doi: 10.1016/j.bbamcr.2008.07.016
- Khodyuchenko T.A., Krasikova A.V. Cajal bodies and histone locus bodies: molecular composition and functions. Ontogenez = Ontogenesis 2014;45(6):363–79. (In Russ.). doi: 10.7868/S0475145014060068
- Hebert M., Szymczyk P., Shpargel K., Matera A. Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Develop 2001;15(20):2720–9. doi: 10.1101/gad.908401
- Tapia O., Bengoechea R., Palanca A. et al. Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy. Histochem Cell Biol 2012;137:657–67. doi: 10.1007/s00418-012-0921-8
- Rossoll W., Jablonka S., Andreassi C. et al. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons. Cell Biol 2003;163(4):801–12. doi: 10.1083/jcb.200304128
- Duy P.Q., An M., Talbot J. et al. HuD and the survival motor neuron protein interact in motoneurons and are essential for motoneuron development, function, and mRNA regulation. Neuroscience 2017;37(48):11559–71. doi: 10.1523/JNEUROSCI.1528-17.2017
- Pereverzeva D.S., Tyushkevich S.A., Gorbachevskaya N.L. et al. Heterogeneity of the clinical picture in syndromes associated with dynamic mutations of the FMR1 gene. Zhurnal nevrologii i psikhiatrii = Journal of Neurology and Psychiatry 2019;119(7):70–8. (In Russ.). doi: 10.17116/jnevro2019119071103
- Binda O., Juillard F., Ducassou J.N. et al. SMA-linked SMN mutants prevent phase separation properties and SMN interactions with FMRP family members. Life Sci Alliance 2022;6(1):e202201429. doi: 10.26508/lsa.202201429
- Gabanella F., Barbato C., Fiore M. et al. Fine-tuning of mTOR mRNA and nucleolin complexes by SMN. Cells 2021;10(11):3015. doi: 10.1093/hmg/11.9.1017
- Kye M.J., Niederst E.D., Wertz M.H. et al. SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet 2014;23(23):6318–31. doi: 10.1093/hmg/ddu350
- Giesemann T., Rathke-Hartlieb S., Rothkegel M. et al. A role for polyproline motifs in the spinal muscular atrophy protein SMN: Profilins bind to and colocalize with SMN in nuclear gems. J Biol Chem 1999;274(53):37908–14. doi: 10.1074/jbc.274.53.37908
- Carlier M.F., Shekhar S. Global treadmilling coordinates actin turnover and controls the size of actin networks. Nat Rev Mol Cell Biol 2017;18(6):389–401. doi: 10.1038/nrm.2016.172
- Sharma A., Lambrechts A., Hao Le T. et al. A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells. Exp Cell Res 2005;309(1):185–97. doi: 10.1016/j.yexcr.2005.05.014
- Nölle A., Zeug A., van Bergeijk J. et al. The spinal muscular atrophy disease protein SMN is linked to the Rho-kinase pathway via profilin. Hum Mol Genet 2011;20(24):4865–78. doi: 10.1093/hmg/ddr425
- Antoine M., Patrick K.L., Soret J. et al. Splicing defects of the profilin gene alter actin dynamics in an S. pombe SMN mutant. Iscience 2020;23(1):100809. doi: 10.3389/fncel.2015.00506
- Bora G., Hensel N., Rademacher S. et al. Microtubule-associated protein 1B dysregulates microtubule dynamics and neuronal mitochondrial transport in spinal muscular atrophy. Hum Mol Genet 2020;29(24):3935–44. doi: 10.1093/hmg/ddaa275
- Torres-Benito L., Neher M.F., Cano R. et al. SMN requirement for synaptic vesicle, active zone and microtubule postnatal organization in motor nerve terminals. PloS One 2011;6(10):e26164. doi: 10.1371/journal.pone.0026164
- Fuller H.R., Mandefro B., Shirran S.L. et al. Spinal muscular atrophy patient iPSC-derived motor neurons have reduced expression of proteins important in neuronal development. Front Cell Neurosci 2016;9:506. doi: 10.3389/fncel.2015.00506
- Wen H.L., Lin Y.T., Ting C.H. et al. Stathmin, a microtubuledestabilizing protein, is dysregulated in spinal muscular atrophy. Hum Mol Genet 2010;19(9):1766–78. doi: 10.1093/hmg/ddq058
- Wen H.L., Ting C.H., Liu H.C. et al. Decreased stathmin expression ameliorates neuromuscular defects but fails to prolong survival in a mouse model of spinal muscular atrophy. Neurobiol Dis 2013;52:94–103. doi: 10.1016/j.nbd.2012.11.015
- Villalón E., Kline R.A, Smith C.E. et al. AAV9-Stathmin1 gene delivery improves disease phenotype in an intermediate mouse model of spinal muscular atrophy. Hum Mol Genet 2019;28(22):3742–54. doi: 10.1093/hmg/ddz188
- Donlin-Asp P.G., Bassell G.J., Rossoll W. A role for the survival of motor neuron protein in mRNP assembly and transport. Curr Opin Neurobiol 2016;39:53–61. doi: 10.1016/j.conb.2016.04.004
- Custer S.K., Foster J.N., Astroski J.W., Androphy E.J. Abnormal Golgi morphology and decreased COPI function in cells with low levels of SMN. Brain Res 2019;1706:135–46. doi: 10.1016/j.brainres.2018.11.005
- Custer S.K., Astroski J.W., Li H.X., Androphy E.J. Interaction between alpha-COP and SMN ameliorates disease phenotype in a mouse model of spinal muscular atrophy. Biochem Biophys Res Commun 2019;514(2):530–37. doi: 10.1016/j.bbrc.2019.04.176
- Fuller H.R., Gillingwater T.H., Wishart T.M. Commonality amid diversity: Multi-study proteomic identification of conserved disease mechanisms in spinal muscular atrophy. Neuromuscul Disord 2016;26(9):560–9. doi: 10.1016/j.nmd.2016.06.004
- Groen E.J., Gillingwater T.H. UBA1: at the crossroads of ubiquitin homeostasis and neurodegeneration. Trends Mol Med 2015;21(10):622–32. doi: 10.1016/j.molmed.2015.08.003
- Chang H.C., Hung W.C., Chuang Y.J., Jong Y.J. Degradation of survival motor neuron (SMN) protein is mediated via the ubiquitin/proteasome pathway. Neurochem Int 2004;45(7):1107–12. doi: 10.1016/j.neuint.2004.04.005
- Powis R.A., Karyka E., Boyd P. et al. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy. JCI Insight 2016;1(11):e87908. doi: 10.1172/jci.insight.87908
- Wishart T.M., Mutsaers C.A., Riessland M. et al. Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy. J Clin Invest 2014;124(4):1821–34. doi: 10.1172/JCI71318
- Shorrock H.K., van der Hoorn D., Boyd P.J. et al. UBA1/GARSdependent pathways drive sensory-motor connectivity defects in spinal muscular atrophy. Brain 2018;141(10):2878–94. doi: 10.1093/brain/awy237
- Markovitz R., Ghosh R., Kuo M.E. et al. GARS-related disease in infantile spinal muscular atrophy: Implications for diagnosis and treatment. Am J Med Genet A 2020;182(5):1167–76. doi: 10.1002/ajmg.a.61544
Supplementary files


