Cognitive and emotional disturbances in adult patients with myotonic dystrophy type 1

Cover Page

Cite item

Full Text

Abstract

Background. Myotonic dystrophy type 1 (DM1) is a hereditary slowly progressive multisystem disease with an autosomal dominant mode of inheritance, caused by the expansion of trinucleotide (CTG)n repeats in the 3’ untranslated region of the DMPK gene. Among the clinical manifestations of DM1, an important place is occupied by symptoms of damage to the central nervous system, in particular cognitive and emotional disorders.

Aim. To evaluate the type of cognitive and emotional impairments in patients with different forms of DM1 and their impact on quality of life.

Materials and methods. 60 patients with genetically confirmed DM1 were examined (average age 37.0 ± 12.4 years; 36 (60.0 %) of them were men). All patients underwent neuropsychological testing using the Montreal Cognitive Rating

Scale, Mini‑Mental State Examination, Addenbrooke’s III, Wechsler tests, pathfinding, symbolic and numeric modalities, Luria’s 10 Words, Frontal Dysfunction Battery; assessment of emotional disturbances using the Hospital Anxiety and Depression Rating Scale and the Apathy Scale; quality of life assessment –  36‑Item Short‑Form Medical Outcomes Study. Brain magnetic resonance imaging was performed in 53 patients to assess the severity of white matter lesions and gray matter atrophy.

Results. The study included 8 (13.3 %) patients with congenital, 19 (31.7 %) – childhood, 33 (55 %) – adult forms of MD1. The group of patients with the congenital form had the most severe cognitive deficits, especially in tests of executive functions and visuospatial perception. Cognitive impairment was also characteristic of the adult form, but to a lesser extent. Compared to controls, patients with DM1 were significantly more likely to exhibit apathy (p = 0.002) rather than anxiety and depression. In DM1, damage to both the white and gray matter of the brain was established, and a connection between damage to the gray matter and depression (r = 0.296) and apathy (r = –0.291) was revealed. The quality of life is largely influenced by emotional disorders (anxiety, r = –0.577; depression, r = –0.650; apathy, r = –0.545).

Conclusion. In patients with DM1, a typical pattern of cognitive impairment has not been identified; different domains of cognitive functions are affected. The greatest cognitive deficit is typical for the group of patients with the congenital form. A connection between damage to the gray matter of the brain and emotional disorders has been revealed.

The presence of the latter reduces the quality of life of patients with DM1.

About the authors

E. K. Erokhina

N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia

Author for correspondence.
Email: erokhina0310@gmail.com
ORCID iD: 0000-0002-9617-1706

Elizaveta Konstantinovna Erokhina 

1 Ostrovityanova St., Moscow 117997

Russian Federation

K. V. Shamtieva

Lomonosov Medical Scientific and Educational Center, M.V. Lomonosov Moscow State University

Email: fake@neicon.ru
ORCID iD: 0000-0002-6995-1352

Build. 10, 27 Lomonosovskiy Prospekt, Moscow 117997

Russian Federation

E. A. Melnik

N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; Research Centre for Medical Genetics

Email: fake@neicon.ru
ORCID iD: 0000-0001-5436-836X

1 Ostrovityanova St., Moscow 117997

1 Moskvorechye St., Moscow 115522

Russian Federation

D. O. Kazakov

N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia

Email: fake@neicon.ru
ORCID iD: 0000-0003-3071-578X

1 Ostrovityanova St., Moscow 117997

Russian Federation

S. A. Kurbatov

Research Institute of Experimental Biology and Medicine, Voronezh State Medical University named after N.N. Burdenko; Saratov State Medical University named after V.I. Razumovsky, Ministry of Health of Russia; LLC “Healthy Child”

Email: fake@neicon.ru
ORCID iD: 0000-0002-8886-5222

10 Studencheskaya St., Voronezh 394036

112 Bolshaya Kazachya St., Saratov 410012

24 Generala Lizyukova St., Voronezh 394077

Russian Federation

E. P. Pavlikova

Lomonosov Medical Scientific and Educational Center, M.V. Lomonosov Moscow State University

Email: fake@neicon.ru
ORCID iD: 0000-0001-7693-5281

Build. 10, 27 Lomonosovskiy Prospekt, Moscow 117997

Russian Federation

O. A. Tikhonova

University Clinic of the Immanuel Kant Baltic Federal University

Email: fake@neicon.ru
ORCID iD: 0000-0002-1796-0193

60 9 Aprelya St., Kaliningrad 236035

Russian Federation

E. A. Mershina

Lomonosov Medical Scientific and Educational Center, M.V. Lomonosov Moscow State University

Email: fake@neicon.ru
ORCID iD: 0000-0002-1266-4926

Build. 10, 27 Lomonosovskiy Prospekt, Moscow 117997

Russian Federation

V. E. Sinitsyn

Lomonosov Medical Scientific and Educational Center, M.V. Lomonosov Moscow State University

Email: fake@neicon.ru
ORCID iD: 0000-0002-5649-2193

Build. 10, 27 Lomonosovskiy Prospekt, Moscow 117997

Russian Federation

D. V. Vlodavets

N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia

Email: fake@neicon.ru
ORCID iD: 0000-0003-2635-2752

1 Ostrovityanova St., Moscow 117997

Russian Federation

References

  1. Pešović J., Perić S., Brkušanin M. et al. Molecular genetic and clinical characterization of myotonic dystrophy type 1 patients carrying variant repeats within DMPK expansions. Neurogenetics 2017;18(4):207–18. doi: 10.1007/s10048-017-0523-7
  2. Itoh K., Mitani M., Kawamoto K. et al. Neuropathology does not correlate with regional differences in the extent of expansion of CTG repeats in the brain with myotonic dystrophy type 1. Acta Histochem Cytochem 2010;43(6):149–56. doi: 10.1267/ahc.10019
  3. Gourdon G., Meola G. Myotonic dystrophies: State of the art of new therapeutic developments for the CNS. Front Cell Neurosci 2017;11:101. doi: 10.3389/fncel.2017.00101
  4. Dhaenens C.M., Tran H., Frandemiche M.L. et al. Mis-splicing of Tau exon 10 in myotonic dystrophy type 1 is reproduced by overexpression of CELF2 but not by MBNL1 silencing. Biochim Biophys Acta 2011;1812(7):732–42. doi: 10.1016/j.bbadis.2011.03.010
  5. Modoni A., Silvestri G., Vita M.G. et al. Cognitive impairment in myotonic dystrophy type 1 (DM1): A longitudinal follow-up study. J Neurol 2008;255(11):1737–42. doi: 10.1007/s00415-008-0017-5
  6. De Serres-Bérard T., Pierre M., Chahine M. et al. Deciphering the mechanisms underlying brain alterations and cognitive impairment in congenital myotonic dystrophy. Neurobiol Dis 2021;160:105532. doi: 10.1016/j.nbd.2021.105532
  7. Gallais B., Montreuil M., Gargiulo M. et al. Prevalence and correlates of apathy in myotonic dystrophy type 1. BMC Neurol 2015;15:148. doi: 10.1186/s12883-015-0401-6
  8. Morin A., Funkiewiez A., Routier A. et al. Unravelling the impact of frontal lobe impairment for social dysfunction in myotonic dystrophy type 1. Brain Commun 2022;4(3):fcac111. doi: 10.1093/braincomms/fcac111
  9. Gallais B., Gagnon C., Mathieu J. et al. Cognitive decline over time in adults with myotonic dystrophy type 1: A 9-year longitudinal study. Neuromuscul Disord 2017;27(1):61–72. doi: 10.1016/j.nmd.2016.10.003
  10. Meola G., Sansone V., Perani D. et al. Executive dysfunction and avoidant personality trait in myotonic dystrophy type 1 (DM-1) and in proximal myotonic myopathy (PROMM/DM-2). Neuromuscul Disord 2003;13(10):813–21. doi: 10.1016/s0960-8966(03)00137-8
  11. Antonini G., Soscia F., Giubilei F. et al. Health-related quality of life in myotonic dystrophy type 1 and its relationship with cognitive and emotional functioning. J Rehabil Med 2006;38(3):181–5. doi: 10.1080/16501970500477967
  12. Antonini G., Mainero C., Romano A. et al. Cerebral atrophy in myotonic dystrophy: A voxel based morphometric study. J Neurol Neurosurg Psychiatry 2004;75(11):1611–3. doi: 10.1136/jnnp.2003.032417
  13. Weber Y.G., Roebling R., Kassubek J. et al. Comparative analysis of brain structure, metabolism, and cognition in myotonic dystrophy 1 and 2. Neurology 2010;74(14):1108–17. doi: 10.1212/WNL.0b013e3181d8c35f
  14. Caso F., Agosta F., Peric S. et al. Cognitive impairment in myotonic dystrophy type 1 is associated with white matter damage. PLoS One 2014;9(8):e104697. doi: 10.1371/journal.pone.0104697
  15. Levy R., Czernecki V. Apathy and the basal ganglia. J Neurol 2006; 253(Suppl 7):VII54–VII61. doi: 10.1007/s00415-006-7012-5
  16. Bajrami A., Azman F., Yayla V. et al. MRI findings and cognitive functions in a small cohort of myotonic dystrophy type 1: Retrospective analyses. Neuroradiology 2017;30(1):23–27.
  17. Magzhanov R.V., Sayfullina E.V., Mukhametova R.R., Mukhamedrakhimov R.R. Cognitive disorders in patients with myotonic dystrophy type I: а clinical and magnetic resonance study. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = Journal of Neurology and Psychiatry named after S.S. Korsakov 2012;112(4):18–22. (In Russ.).
  18. Lagrue E., Dogan C., De Antonio M. et al. A large multicenter study of pediatric myotonic dystrophy type 1 for evidence-based management. Neurology 2019;92(8):е852–65. doi: 10.1212/WNL.0000000000006948.
  19. Siqueira G.S.A., Hagemann P.M.S., Coelho D.S. et al. Can MoCA and MMSE be interchangeable cognitive screening tools? A systematic review. Gerontologist 2019;59(6):e743–63. doi: 10.1093/geront/gny126
  20. Gallais B., Gagnon C., Côté I. et al. Reliability of the apathy evaluation scale in myotonic dystrophy type 1. J Neuromuscul Dis 2018;5(1):39–46. doi: 10.3233/JND-170274
  21. Fazekas F., Chawluk J. B., Alavi A. et al. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am J Roentgenol 1987;149:351–6. doi: 10.2214/ajr.149.2.351
  22. Varako N.A., Arkhipova D.V., Kovyazina M.S. et al. The Addenbrooke’s Cognitive Examination III (ACE-III): linguistic and cultural adaptation into Russian. Annaly klinicheskoy i eksperimentalnoy nevrologii = Annals of Clinical and Experimental Neurology 2022;16(1):53–8. (In Russ.). doi: 10.54101/ACEN.2022.1.7
  23. Axford M.M., Pearson C.E. Illuminating CNS and cognitive issues in myotonic dystrophy: Workshop report. Neuromuscul Disord 2013;23(4):370–4. doi: 10.1016/j.nmd.2013.01.003
  24. Winblad S., Samuelsson L., Lindberg C. et al. Cognition in myotonic dystrophy type 1: A 5-year follow-up study. Eur J Neurol 2016;23(9): 1471–6. doi: 10.1111/ene.13062
  25. Peric S., Rakocevic Stojanovic V., Mandic Stojmenovic G. et al. Clusters of cognitive impairment among different phenotypes of myotonic dystrophy type 1 and type 2. Neurol Sci 2017;38(3):415–23. doi: 10.1007/s10072-016-2778-4
  26. Okkersen K., Buskes M., Groenewoud J. et al. The cognitive profile of myotonic dystrophy type 1: A systematic review and meta-analysis. Cortex 2017;95:143–55. doi: 10.1016/j.cortex.2017.08.008
  27. Mammarella I.C., Cornoldi C. Nonverbal learning disability (developmental visuospatial disorder). Handb Clin Neurol 2020;174:83–91. doi: 10.1016/B978-0-444-64148-9.00007-7
  28. Wen W., Sachdev P.S., Li J.J. et al. White matter hyperintensities in the forties: their prevalence and topography in an epidemiological sample aged 44–48. Hum Brain Mapp 2009;30(4):1155–67. doi: 10.1002/hbm.20586
  29. Brusa C., Gadaleta G., D’Alessandro R. et al. Psychopharmacological treatments for mental disorders in patients with neuromuscular diseases: A scoping review. Brain Sci 2022;12(2):176–89. doi: 10.3390/brainsci12020176
  30. Labayru G., Aliri J., Zulaica M. et al. Age-related cognitive decline in myotonic dystrophy type 1: An 11-year longitudinal follow-up study. J Neuropsychol 2020;14(1):121–34. doi: 10.1111/jnp.12192

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 85909 от  25.08.2023.