EBF3-ассоциированный синдром гипотонии, атаксии и задержки психического развития – маска церебрального паралича (описание клинического случая)
https://doi.org/10.17650/2222-8721-2024-14-2-68-77
Аннотация
Патогенные нуклеотидные варианты во многих генетических локусах могут вызывать состояния, подобные церебральному параличу. Установление этиологического диагноза имеет важное клиническое значение для оптимального менеджмента заболевания и его лечения.
Представленный семейный случай демонстрирует клинический полиморфизм, ассоциированный с вариантами в гене EBF3, нарушающими регуляцию транскрипции. Описанный нами вариант c.703C>T (p.His235Tyr) в гене EBF3 приводит к тяжелым двигательным и интеллектуальным нарушениям, имитирующим церебральный паралич. Своевременное выявление моногенных заболеваний, скрывающихся под маской церебрального паралича, поможет в ранние сроки установить диагноз и провести медико‑генетическое консультирование для профилактики повторных случаев в семье.
Об авторах
Л. З. АфандиеваРоссия
420012 Казань, ул. Бутлерова, 49
Д. Д. Гайнетдинова
Россия
420012 Казань, ул. Бутлерова, 49
Д. В. И
Россия
Дмитрий Витальевич И
680000 Хабаровск, ул. Муравьева-Амурского, 35
Список литературы
1. Wimalasundera N., Stevenson V.L. Cerebral palsy. Pract Neurol 2016;16(3):184–94. DOI: 10.1136/practneurol-2015-001184
2. Korzeniewski S.J., Slaughter J., Lenski M. et al. The complex aetiology of cerebral palsy. Nat Rev Neurol 2018;14(9):528–43. DOI: 10.1038/s41582-018-0043-6
3. Novak I., Morgan C., Adde L. et al. Early, accurate diagnosis and early intervention in cerebral palsy: Аdvances in diagnosis and treatment. JAMA Pediatr 2017;171(9):897–907. DOI: 10.1001/jamapediatrics.2017.1689
4. Mcintyre S., Taitz D., Keogh J. et al. A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Dev Med Child Neurol 2013;55(6):499–508. DOI: 10.1111/dmcn.12017
5. Fahey M.S., Maclennan A.H., Kretzscmar D. et al. The genetic basis of cerebral palsy. Dev Med Child Neurol 2017;59(5):462–9. DOI: 10.1111/dmcn.13363
6. Reid S.M., Dagia C.D., Ditchfield M.R. et al. Population-based studies of brain imaging patterns in cerebral palsy. Dev Med Child Neurol 2014;56(3):222–32. DOI: 10.1111/dmcn.12228
7. Ferriero D.M. The vulnerable newborn brain: Imaging patterns of acquired perinatal injury. Neonatology 2016;109(4):345–51. DOI: 10.1159/000444896
8. Horber V., Sellier E., Horridge K. et al. The origin of the cerebral palsies: Contribution of population-based neuroimaging data. Neuropediatrics 2020;51(2):113–9. DOI: 10.1055/s-0039-3402007.
9. Numata Y., Onuma A., Kobayashi Y. et al. Brain magnetic resonance imaging and motor and intellectual functioning in 86 patients born at term with spastic diplegia. Dev Med Child Neurol 2013;55(2):167–72. DOI: 10.1111/dmcn.12013
10. Jin S.C., Lewis S.A., Bakhtiari S. et al. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy [published correction appears in Nat Genet 2021;53(3):412]. Nat Genet 2020;52(10):1046–56. DOI: 10.1038/s41588-020-0695-1
11. Mohandas N., Bass-Stringer S., Maksimovic J. et al. Epigenome-wide analysis in newborn blood spots from monozygotic twins discordant for cerebral palsy reveals consistent regional differences in DNA methylation. Clin Epigenetics 2018;10:25. DOI: 10.1186/s13148-018-0457-4
12. Zhu Q., Ni Y., Wang J. et al. Zhonghua yixue yichuanxue zazhi. Chinese J Med Genet 2019;36(3):229–33. DOI: 10.3760/cma.j.issn.1003-9406.2019.03.009
13. Sleven H., Welsh S.J., Yu J. et al. De novo mutations in EBF3 cause a neurodevelopmental syndrome. Am J Hum Genet 2017;100(1):138–50. DOI: 10.1016/j.ajhg.2016.11.020
14. Takezawa Y., Kikuchi A., Haginoya K. et al. Genomic analysis identifies masqueraders of full-term cerebral palsy. Ann Clin Transl Neurol 2018;5(5):538–51. DOI: 10.1002/acn3.551
15. Parolin S.R., Perkins E.M., Miller J.W. et al. De novo point mutations in patients diagnosed with ataxic cerebral palsy. Brain 2015;138(Pt 7):1817–32. DOI: 10.1093/brain/awv117
16. McMichael G., Bainbridge M.N., Haan E. et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry 2015;20(2):176–82. DOI: 10.1038/mp.2014.189
17. Jin S.C., Lewis S.A., Bakhtiari S. et al. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet 2020;52(10):1046–56. DOI: 10.1038/s41588-020-0695-1
18. Zech M., Jech R., Boesch S. et al. Monogenic variants in dystonia: An exome-wide sequencing study. Lancet Neurol 2020;19(11):908–18. DOI: 10.1016/S1474-4422(20)30312-4
19. Zouvelou V., Yubero D., Apostolakopoulou L. et al. The genetic etiology in cerebral palsy mimics: The results from a Greek tertiary care center. Eur J Paediatr Neurol 2019;23(3):427–37. DOI: 10.1016/j.ejpn.2019.02.001
20. Segel R., Ben-Pazi H., Zeligson S. et al. Copy number variations in cryptogenic cerebral palsy. Neurology 2015;84(16):1660–8. DOI: 10.1212/WNL.0000000000001494
21. Oskoui M., Gazzellone M., Thiruvahindrapuram B. et al. Clinically relevant copy number variations detected in cerebral palsy. Nat Commun 2015;6:7949. DOI: 10.1038/ncomms8949
22. Zarrei M., Fehlings D.L., Mawjee K. et al. De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy. Genet Med 2018;20(2):172–80. DOI: 10.1038/gim.2017.83
23. McMichael G., Girirajan S., Moreno-De-Luca A. et al. Rare copy number variation in cerebral palsy. Eur J Hum Genet 2014;22(1):40–5. DOI: 10.1038/ejhg.2013.93
24. Corbett M.A., Webber D.L., Bent S.J. et al. Pathogenic copy number variants that affect gene expression contribute to genomic burden in cerebral palsy. NPJ Genom Med 2019;4:11. DOI: 10.1038/s41525-018-0073-4
25. Parrini E., Conti V., Dobyns W.B. et al. Genetic basis of brain malformations. Mol Syndromol 2016;7(4):220–33. DOI: 10.1159/000448639
26. Guerrini R., Dobyns W.B. Malformations of cortical development: Clinical features and genetic causes. Lancet Neurol 2014;13(7):710–26. DOI: 10.1016/S1474-4422(14)70040-7
27. Chiara F., Badaloni A., Croci L. et al. Early B-cell factors 2 and 3 (EBF2/3) regulate early migration of Cajal–Retzius cells from the cortical hem. Dev Biol 2012;365(1):277–89. DOI: 10.1016/j.ydbio.2012.02.034
28. Friocourt G., Parnavelas J.G. Identification of Arx targets unveils new candidates for controlling cortical interneuron migration and differentiation. Front Cell Neurosci 2011;5:28. DOI: 10.3389/fncel.2011.00028
29. Harms F.L., Girisha K.M., Hardigan A.A. et al. Mutations in EBF3 disturb transcriptional profiles and cause intellectual disability, ataxia, and facial dysmorphism. Am J Hum Genet 2017;100(1):117–27. DOI: 10.1016/j.ajhg.2016.11.012
30. Tanaka A.J., Cho M.T., Willaert R. et al. De novo variants in EBF3 are associated with hypotonia, developmental delay, intellectual disability, and autism. Cold Spring Harb Mol Case Stud 2017;3(6):a002097. DOI: 10.1101/mcs.a002097.
31. Nishi E., Uehara T., Yanagi K. et al. Clinical spectrum of individuals with de novo EBF3 variants or deletions. Am J Med Genet Part A 2021;185(10):2913–21. DOI: 10.1002/ajmg.a.62369
Рецензия
Для цитирования:
Афандиева Л.З., Гайнетдинова Д.Д., И Д.В. EBF3-ассоциированный синдром гипотонии, атаксии и задержки психического развития – маска церебрального паралича (описание клинического случая). Нервно-мышечные болезни. 2024;14(2):68‑77. https://doi.org/10.17650/2222-8721-2024-14-2-68-77
For citation:
Afandieva L.Z., Gaynetdinova D.D., I D.V. EBF3-associated hypotonia, ataxia and delayed development syndrome – the mask cerebral palsy (case report). Neuromuscular Diseases. 2024;14(2):68‑77. (In Russ.) https://doi.org/10.17650/2222-8721-2024-14-2-68-77