Prospects of etiopathogenetic treatment of Huntington’s disease
- Authors: Kondakova O.B.1, Demyanov S.V.2, Krasivskaya A.V.2, Demyanov G.V.2, Grebenkin D.I.1, Davydova Y.I.1, Lyalina A.A.1, Radkevich E.R.2, Savostyanov K.V.1
-
Affiliations:
- National Medical Research Center for Children’s Health, Ministry of Health of Russia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Ministry of Health of Russia
- Issue: Vol 13, No 1 (2023)
- Pages: 22-32
- Section: LECTURES AND REVIEWS
- Published: 25.03.2023
- URL: https://nmb.abvpress.ru/jour/article/view/523
- DOI: https://doi.org/10.17650/2222-8721-2023-13-1-22-32
- ID: 523
Cite item
Full Text
Abstract
Huntington’s disease is a serious inherited neurodegenerative disorder characterized by of motor, cognitive and psychiatric features. The disease is caused by an abnormally expanded CAG repeat expansion in the HTT gene and the production of mutant huntingtin protein.
The disease usually manifests in adulthood, but the manifestation in childhood and youth is also described, which is noted in 5–10 % of cases. The disease predominantly affects the neostriatum, resulting in a characteristic clinical picture.
The most promising approaches to etiotropic therapy of Huntington’s disease are a number of DNA- (CRISPR/Cas9 system) and RNA-directed methods (antisense oligonucleotides, RNA interference), methods that directly reduce the level of mutant gentingtin (chimera molecules), as well as approaches based on inactivating the DNA mismatch repair system using the FAN1 enzyme.
About the authors
O. B. Kondakova
National Medical Research Center for Children’s Health, Ministry of Health of Russia
Author for correspondence.
Email: kondakova.ob@nczd.ru
ORCID iD: 0000-0002-6316-9992
Olga Borisovna Kondakova,
Build. 1, 2 Lomonosovskiy Prospekt, Moscow 119991
Russian FederationS. V. Demyanov
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-1893-7198
Build. 2, 8 Trubetskaya St., Moscow 119048
Russian FederationA. V. Krasivskaya
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0001-9971-8909
Build. 2, 8 Trubetskaya St., Moscow 119048
Russian FederationG. V. Demyanov
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0003-1584-4604
Build. 2, 8 Trubetskaya St., Moscow 119048
Russian FederationD. I. Grebenkin
National Medical Research Center for Children’s Health, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-0551-5869
Build. 1, 2 Lomonosovskiy Prospekt, Moscow 119991
Russian FederationYu. I. Davydova
National Medical Research Center for Children’s Health, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0001-5978-854X
Build. 1, 2 Lomonosovskiy Prospekt, Moscow 119991
Russian FederationA. A. Lyalina
National Medical Research Center for Children’s Health, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0001-5657-7851
Build. 1, 2 Lomonosovskiy Prospekt, Moscow 119991
Russian FederationE. R. Radkevich
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0003-0206-0114
Build. 2, 8 Trubetskaya St., Moscow 119048
Russian FederationK. V. Savostyanov
National Medical Research Center for Children’s Health, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0003-4885-4171
Build. 1, 2 Lomonosovskiy Prospekt, Moscow 119991
Russian FederationReferences
- Bakels H.S., Roos R.A.C., van Roon-Mom W.M.C. et al. Juvenileonset huntington disease pathophysiology and neurodevelopment: a review. Mov Disord 2022;37(1):16–24. doi: 10.1002/mds.28823
- Клюшников С.А. Болезнь Гентингтона. Неврологический журнал им. Л.О. Бадаляна 2020;1(3):139–58. doi: 10.17816/2686-8997-2020-1-3-139-158 Klyushnikov S.A. Huntington’s disease. Mevrologicheskiy zhurnal im. L.O. Badalyana = L.O. Badalyan Neurological Journal 2020;1(3):139–58. (In Russ.). doi: 10.17816/2686-8997-2020-1-3-139-158
- Jarosińska O.D., Rüdiger S.G.D. Molecular strategies to target protein aggregation in Huntington’s disease. Front Mol Biosci 2021;8:769184. doi: 10.3389/fmolb.2021.769184
- Sharon I., Sharon R., Wilkens J.P. et al. Huntington disease dementia. Available at: https://emedicine.medscape.com/article/289706overview?reg=1&icd=login_success_email_match_norm#a6.
- Caron N.S., Wright G.E.B., Hayden M.R. Huntington disease. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1305/.
- Tabrizi S.J., Ghosh R., Leavitt B.R. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron 2019;101(5):801–19. doi: 10.1016/j.neuron.2019.01.039
- Fields E., Vaughan E., Tripu D. et al. Gene targeting techniques for Huntington's disease. Ageing Res Rev 2021;70:101385. doi: 10.1016/j.arr.2021.101385
- Shannon K.M. Recent Advances in the treatment of Huntington’s disease: targeting DNA and RNA. CNS Drugs 2020;34(3):219–28. doi: 10.1007/s40263-019-00695-3
- Świtońska-Kurkowska K., Krist B., Delimata J. et al. Juvenile Huntington’s disease and other PolyQ diseases, update on neurodevelopmental character and comparative bioinformatic review of transcriptomic and proteomic data. Front Cell Dev Biol 2021;9:642773. doi: 10.3389/fcell.2021.642773
- Beatriz M., Lopes C., Ribeiro A.C.S. et al. Revisiting cell and gene therapies in Huntington’s disease. J Neurosci Res 2021;99(7):1744–62. doi: 10.1002/jnr.24845
- Kumar A., Kumar V., Singh K. et al. Therapeutic advances for Huntington’s disease. Brain Sci 2020;10(1):43. doi: 10.3390/brainsci10010043
- Frank W., Lindenberg K.S., Mühlbäck A. et al. Krankheitsmodifizierende Therapieansätze bei der Huntington-Krankheit: Blicke zurück und Blicke voraus [Disease-modifying treatment approaches in Huntington disease : Past and future]. Nervenarzt 2022;93(2):179–90. doi: 10.1007/s00115-021-01224-8
- Vachey G., Déglon N. CRISPR/Cas9-Mediated genome editing for Huntington’s disease. Methods Mol Biol 2018;1780:463–81. doi: 10.1007/978-1-4939-7825-0_21
- Marxreiter F., Stemick J., Kohl Z. Huntington lowering strategies. Int J Mol Sci 2020;21(6):2146. doi: 10.3390/ijms21062146
- Dabrowska M., Juzwa W., Krzyzosiak W.J. et al. Precise excision of the CAG tract from the Huntingtin gene by Cas9 nickases. Front Neurosci 2018;12:75. doi: 10.3389/fnins.2018.00075
- Kolli N., Lu M., Maiti P. et al. CRISPR-Cas9 mediated genesilencing of the mutant huntingtin gene in an in vitro model of Huntington’s disease. Int J Mol Sci 2017;18(4):754. doi: 10.3390/ijms18040754
- Pfister E.L., Kennington L., Straubhaar J. et al. Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr Biol 2009;19(9):774–8. doi: 10.1016/j.cub.2009.03.030
- Vigont V.A., Grekhnev D.A., Lebedeva O.S. et al. STIM2 mediates excessive store-operated calcium entry in patient-specific iPSCderived neurons modeling a juvenile form of Huntington’s disease. Front Cell Dev Biol 2021;9:625231. doi: 10.3389/fcell.2021.625231
- Harding R.J., Tong Y.F. Proteostasis in Huntington’s disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol Sin 2018;39(5):754–69. doi: 10.1038/aps.2018.11
- Monk R., Connor B. Cell Replacement therapy for Huntington’s disease. Adv Exp Med Biol 2020;1266:57–69. doi: 10.1007/978-981-15-4370-8_5
- Goold R., Hamilton J., Menneteau T. et al. FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington’s disease. Cell Rep 2021;36(9):109649. doi: 10.1016/j.celrep.2021.109649
- Wheeler V.C., Dion V. Modifiers of CAG/CTG repeat instability: insights from mammalian models. J Huntingtons Dis 2021;10(1):123–48. doi: 10.3233/JHD-200426
- Fjodorova M., Louessard M., Li Z. et al. CTIP2-regulated reduction in PKA-dependent DARPP32 phosphorylation in human medium spiny neurons: implications for Huntington disease. Stem Cell Rep 2019;13(3):448–57. doi: 10.1016/j.stemcr.2019.07.015
- Paulsen J.S. Early detection of Huntington disease. Future Neurol 2010;5(1):10.2217/fnl.09.78. doi: 10.2217/fnl.09.78
- Illarioshkin S.N. Huntington’s disease as a model for the study of neurodegenerative diseases. Byulleten Nacionalnogo obschestva po izucheniyu bolezni Parkinsona i rasstroystv dvizheniy = National Society for the Study of Parkinson’s Disease and Movement Disorders Bulletin 2016;(1):3–11. (In Russ.)
- Akrich M., Paterson F., Rabeharisoa V. Social and ethical issues regarding presymptomatic diagnosis: a literature review. Available at: https://hal-mines-paristech.archives-ouvertes.fr/hal-03040870/ document.
Supplementary files



