Молекулярно-генетические основы синдрома Рубинштейна–Тейби
- Авторы: Исмагилова О.Р.1, Бескоровайная Т.С.1, Адян Т.А.1,2, Поляков А.В.1
-
Учреждения:
- ФГБНУ «Медико-генетический научный центр им. акад. Н. П. Бочкова» Минобрнауки России
- ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н. И. Пирогова» Минздрава России
- Выпуск: Том 13, № 2 (2023)
- Страницы: 31-41
- Раздел: ЛЕКЦИИ И ОБЗОРЫ
- Статья опубликована: 15.06.2023
- URL: https://nmb.abvpress.ru/jour/article/view/541
- DOI: https://doi.org/10.17650/2222-8721-2023-13-2-31-41
- ID: 541
Цитировать
Полный текст
Аннотация
Синдром Рубинштейна–Тейби – мультисистемная патология, характеризующаяся умственной отсталостью и задержкой физического развития в сочетании с набором фенотипических признаков, составляющих узнаваемую картину заболевания. В данном обзоре литературы освещены молекулярно‑генетические основы и предполагаемый патогенез синдрома Рубинштейна–Тейби, рассмотрены вопросы гено‑фенотипических корреляций и дифференциальной диагностики в группе хроматинопатий.
Ключевые слова
Об авторах
О. Р. Исмагилова
ФГБНУ «Медико-генетический научный центр им. акад. Н. П. Бочкова» Минобрнауки России
Автор, ответственный за переписку.
Email: ismolga.mg@mail.ru
Ольга Раисовна Исмагилова
115522 Москва, ул. Москворечье, 1
РоссияТ. С. Бескоровайная
ФГБНУ «Медико-генетический научный центр им. акад. Н. П. Бочкова» Минобрнауки России
Email: fake@neicon.ru
115522 Москва, ул. Москворечье, 1
РоссияТ. А. Адян
ФГБНУ «Медико-генетический научный центр им. акад. Н. П. Бочкова» Минобрнауки России; ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н. И. Пирогова»Минздрава России
Email: fake@neicon.ru
115522 Москва, ул. Москворечье, 1
117997 Москва, ул. Островитянова, 1
РоссияА. В. Поляков
ФГБНУ «Медико-генетический научный центр им. акад. Н. П. Бочкова» Минобрнауки России
Email: fake@neicon.ru
115522 Москва, ул. Москворечье, 1
РоссияСписок литературы
- Roelfsema J.H., Peters D.J.M. Rubinstein–Taybi syndrome: clinical and molecular overview. Expert Rev Mol Med 2007;9(23):1–16. doi: 10.1017/S1462399407000415
- Hennekam R.C.M., Stevens C.A., Van de Kamp J.J.P. Etiology and recurrence risk in Rubinstein–Taybi syndrome. Am J Med Gen 1990;37(S6):56–64. doi: 10.1002/ajmg.1320370610
- Negri G., Milani D., Colapietro P. et al. Clinical and molecular characterization of Rubinstein–Taybi syndrome patients carrying distinct novel mutations of the EP300 gene. Clin Gen 2015;87(2):148–54. doi: 10.1111/cge.12348
- Spena S., Milani D., Rusconi D. et al. Insights into genotype–phenotype correlations from CREBBP point mutation screening in a cohort of 46 Rubinstein–Taybi syndrome patients. Clin Genet 2015;88(5):431–40. doi: 10.1111/cge.12537
- Bartsch O., Kress W., Kempf O. et al. Inheritance and variable expression in Rubinstein–Taybi syndrome. Am J Med Genet 2010;152A(9):2254–61. doi: 10.1002/ajmg.a.33598.
- Petrij F., Giles R.H., Dauwerse H.G. et al. Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 1995;376(6538):348–51. doi: 10.1038/376348a0
- Arany Z.N., Sellers WR., Livingston D. M., Eckner R. E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 1994;77(6):799–800. doi: 10.1016/0092-8674(94)90127-9
- Korzus E. Rubinstein–Taybi syndrome and epigenetic alterations. Adv Exp Med Biol 2017;978:39–62. doi: 10.1007/978-3-319-53889-1_3.
- Dyson H.J., Wright P.E. Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J Biol Chem 2016;291(13):6714–22. doi: 10.1074/jbc.R115.692020
- Park E., Kim Y., Ryu H. et al. Epigenetic mechanisms of Rubinstein–Taybi syndrome. Neuromolecular Med 2014;16(1): 16–24. doi: 10.1007/s12017-013-8285-3
- Ramos Y.F., Hestand M.S., Verlaan M. et al. Genome-wide assessment of differential roles for p300 and CBP in transcription regulation. Nucleic Acids Res 2010;38(16):5396–408. doi: 10.1093/nar/gkq184
- Kasper L.H., Qu C., Obenauer J.C., McGoldrick D.J., Brindle P.K. Genome-wide and single-cell analyses reveal a context dependent relationship between CBP recruitment and gene expression. Nucleic Acids Res 2014;42(18):11363–82. doi: 10.1093/nar/gku827
- Viosca J., Lopez-Atalaya J.P., Olivares R. et al. Syndromic features and mild cognitive impairment in mice with genetic reduction on p300 activity: differential contribution of p300 and CBP to Rubinstein–Taybi syndrome etiology. Neurobiol Dis 2010;37(1):186–94. doi: 10.1016/j.nbd.2009.10.001
- McManus K.J., Hendzel M.J. Quantitative analysis of CBP-and P300-induced histone acetylations in vivo using native chromatin. Mol Cell Biol 2003;23(21):7611–27. doi: 10.1128/MCB.23.21.7611-7627.2003
- De Guzman R.N., Wojciak J.M., Martinez-Yamout M.A. et al. CBP/p300 TAZ1 domain forms a structured scaffold for ligand binding. Biochemistry 2005;44(2):490–97. doi: 10.1021/bi048161t
- De Guzman R.N., Liu H.Y., Martinez-Yamout M. et al. Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP. J Mol Biol 2000;303(2):243–53. doi: 10.1006/jmbi.2000.4141
- Zhang Y., Xue Y., Shi J. et al. The ZZ domain of p300 mediates specificity of the adjacent HAT domain for histone H3. Nat Struct Mol Biol 2018;25(9):841–49. doi: 10.1038/s41594-018-0114-9
- Manning E.T., Ikehara T., Ito T. et al. p300 forms a stable, template-committed complex with chromatin: role for the bromodomain. Mol Cell Biol 2001;21(12):3876–87. doi: 10.1128/MCB.21.12.3876-3887.2001
- Park S., Martinez-Yamout M.A., Dyson H.J., Wright P.E. The CH2 domain of CBP/p300 is a novel zinc finger. FEBS Lett 2013;587(16):2506–11. doi: 10.1016/j.febslet.2013.06.051
- Park S., Stanfield R.L., Martinez-Yamout M.A. et al. Role of the CBP catalytic core in intramolecular SUMOylation and control of histone H3 acetylation. Proc Nat Acad Sci 2017;114(27):E5335–E5342. doi: 10.1073/pnas.1703105114
- Rack J.G., Lutter T., Bjerga G.E.K. et al. The PHD finger of p300 influences its ability to acetylate histone and non-histone targets. J Mol Biol 2014;426(24):3960–72. doi: 10.1016/j.jmb.2014.08.011
- Ma L., Gao Z., Wu J. et al. Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics. Mol Cell 2021;81(8):1682–97.e7. doi: 10.1016/j.molcel.2021.01.031.
- Kalkhoven E., Roelfsema J.H., Teunissen H. et al. Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein– Taybi syndrome. Hum Mol Gen 2003;12(4):441–50. doi: 10.1093/hmg/ddg039
- Yuan L. W., Gambee J. E. Histone acetylation by p300 is involved in CREB-mediated transcription on chromatin. Bioch Biophys Acta 2001;1541(3):161–69. doi: 10.1016/S0167-4889(01)00141-0
- Radhakrishnan I., P rez-Alvarado G.C., Parker D. et al. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator: coactivator interactions. Cell 1997;91(6):741–52. doi: 10.1016/s0092-8674(00)80463-8
- Parker D., Jhala U.S., Radhakrishnan I. et al. Analysis of an activator: coactivator complex reveals an essential role for secondary structure in transcriptional activation. Mol Cell 1998;2(3):353–9. doi: 10.1016/S1097-2765(00)80279-8
- Bedford D.C., Kasper L.H., Fukuyama T. et al. Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics 2010;5(1):9–15. doi: 10.4161/epi.5.1.10449
- Merz K., Herold S., Lie D. C. CREB in adult neurogenesis–master and partner in the development of adult-born neurons? Eur J Neuro Sci 2011;33(6):1078–86. doi: 10.1111/j.1460-9568.2011.07606.x
- Ateca-Cabarga J.C., Cosa A., Pallar s V. et al. Brain size regulations by CBP haploinsufficiency evaluated by in-vivo MRI based volumetry. Sci Rep 2015;5:16256. doi: 10.1038/srep16256
- Alari V., Russo S., Terragni B. et al. iPSC-derived neurons of CREBBP-and EP300-mutated Rubinstein–Taybi syndrome patients show morphological alterations and hypoexcitability. Stem Cell Res 2018;30:130–40. doi: 10.1016/j.scr.2018.05.019
- Pogacar S., Nora N.F., Kemper T.L. Neuropathological findings in the Rubinstein–Taybi syndrome. R I Med J 1973;56(3):114–21.
- Calzari L., Barcella M., Alari V. et al. Transcriptome analysis of iPSC-derived neurons from Rubinstein–Taybi patients reveals deficits in neuronal differentiation. Mol Neurobiol 2020;57(9):3685–701. doi: 10.1007/s12035-020-01983-6
- Lipscombe D., Soto E.J.L. Alternative splicing of neuronal genes: new mechanisms and new therapies. Cur Opin Neurobiol 2019;57:26–31. doi: 10.1016/j.conb.2018.12.013
- Larizza L., Calzari L., Alari V., Russo S. Genes for RNA-binding proteins involved in neural-specific functions and diseases are downregulated in Rubinstein–Taybi iNeurons. Neur Regener Res 2022;17(1):5–14. doi: 10.4103/1673-5374.314286
- Ajmone P.F., Avignone S., Gervasini C. et al. Rubinstein–Taybi syndrome: New neuroradiological and neuropsychiatric insights from a multidisciplinary approach. Am J Med Genet B Neuropsychiatr Genet 2018;177(4):406–15. doi: 10.1002/ajmg.b.32628
- Wang L., Tang Y., Cole P.A., Marmorstein R. Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr Opin Struct Biol 2008;18(6):741–47. doi: 10.1016/j.sbi.2008.09.004
- Bose D.A., Donahue G., Reinberg D. et al. RNA binding to CBP stimulates histone acetylation and transcription. Cell 2017; 168(1-2):135–49.e22. doi: 10.1016/j.cell.2016.12.020
- Das C., Lucia M.S., Hansen K.C., Tyler J.K. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009;459(7243):113–7. doi: 10.1038/nature07861
- Weinert B.T., Narita T., Satpathy S. et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylomeb. Cell 2018;174(1):231–244.e12. doi: 10.1016/j.cell.2018.04.033
- Bannister A.J., Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature 1996;384(6610):641–3. doi: 10.1038/384641a0
- Kalkhoven E. CBP and p300: HATs for different occasions. Biochem Pharmacol 2004;68(6):1145–55. doi: 10.1016/j.bcp.2004.03.045
- Zocchi L., Sassone-Corsi P. Joining the dots: from chromatin remodeling to neuronal plasticity. Curr Opin Neurobiol 2010;20(4):432–40. doi: 10.1016/j.conb.2010.04.005
- Borrelli E., Nestler E.J., Allis C.D., Sassone-Corsi P. Decoding the epigenetic language of neuronal plasticity. Neuron 2008;60(6):961–74. doi: 10.1016/j.neuron.2008.10.012
- Wang J., Weaver I.C., Gauthier-Fisher A. et al. CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein–Taybi syndrome brain. Dev Cell 2010;18(1):114–25. doi: 10.1016/j.devcel.2009.10.023
- Wood M.A., Kaplan M.P., Park A. et al. Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn Mem 2005;12(2):111–9. doi: 10.1101/lm.86605
- Korzus E., Rosenfeld M.G., Mayford M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 2004;42(6):961–72. doi: 10.1016/j.neuron.2004.06.002
- Oliveira A.M.M., Wood M.A., McDonough C.B., Abel T. Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn Mem 2007;14(9):564–72. doi: 10.1101/lm.656907
- Oliveira A.M.M., Estévez M.A., Hawk J.D. et al. Subregionspecific p300 conditional knock-out mice exhibit long-term memory impairments. Learn Mem 2011;18(3):161–9. doi: 10.1101/lm.1939811
- Vieira P.A., Korzus E. CBP-dependent memory consolidation in the prefrontal cortex supports object-location learning. Hippocampus 2015;25(12):1532–40. doi: 10.1002/hipo.22473
- Haettig J., Stefanko D.P., Multani M.L. et al. HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner. Learn Mem 2011;18(2): 71–9. doi: 10.1101/lm.1986911
- Chatterjee S., Angelakos C.C., Bahl E. et al. The CBP KIX domain regulates long-term memory and circadian activity. BMC Biology 2020;18(1):1–23. doi: 10.1186/s12915-020-00886-1
- McNulty S.E., Barrett R.M., Vogel-Ciernia A. et al. Differential roles for Nr4a1 and Nr4a2 in object location vs. object recognition long-term memory. Learn Mem 2012;19(12):588–92. doi: 10.1101/lm.026385.112
- Lee S., Lee S. K. Crucial roles of histone-modifying enzymes in mediating neural cell-type specification. Curr Opin Neurobiol 2010;20(1):29–36. doi: 10.1016/j.conb.2010.01.003
- Hsieh J., Nakashima K., Kuwabara T. et al. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 2004;101(47):16659–64. doi: 10.1073/pnas.0407643101
- Yu I.T., Park J.Y., Kim S.H. et al. Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology 2009;56(2):473–80. doi: 10.1016/j.neuropharm.2008.09.019
- Barco A. The Rubinstein–Taybi syndrome: modeling mental impairment in the mouse. Genes Brain Behav 2007;6(Suppl 1): 32–9. doi: 10.1111/j.1601-183X.2007.00320.x
- Lopez-Atalaya J.P., Ciccarelli A., Viosca J. et al. CBP is required for environmental enrichment‐induced neurogenesis and cognitive enhancement. EMBO J 2011;30(20):4287–98. doi: 10.1038/emboj.2011.299
- López-Atalaya J.P., Gervasini C., Mottadelli F. et al. Histone acetylation deficits in lymphoblastoid cell lines from patients with Rubinstein–Taybi syndrome. J Med Genet 2012;49(1):66–74. doi: 10.1136/jmedgenet-2011-100354
- Dutto I., Scalera C., Prosperi E. CREBBP and p300 lysine acetyl transferases in the DNA damage response. Cell Mol Life Sci 2018;75(8):1325–38. doi: 10.1007/s00018-017-2717-4
- Reed S. M., Quelle D.E. p53 acetylation: regulation and consequences. Cancers (Basel) 2015;7(1):30–69. doi: 10.3390/cancers7010030
- Akinsiku O.E., Soremekun O.S., Soliman M.E.S. Update and Potential Opportunities in CBP [Cyclic Adenosine Monophosphate (cAMP) Response Element-Binding Protein (CREB)-Binding Protein] Research Using Computational Techniques. Protein J 2021;40(1):19–27. doi: 10.1007/s10930-020-09951-8
- Zhang R., Edwards J.R., Ko S.Y. et al. Transcriptional regulation of BMP2 expression by the PTH-CREB signaling pathway in osteoblasts. PLoS One 2011;6(6):e20780. doi: 10.1371/J.pone.0020780.
- Shim J.H., Greenblatt M.B., Singh A. et al. Administration of BMP2/7 in utero partially reverses Rubinstein–Taybi syndrome-like skeletal defects induced by Pdk1 or Cbp mutations in mice. J Clin Invest 2012;122(1):91–106. doi: 10.1172/JCI59466
- Moslehi R., Mills J.L., Signore C. et al. Integrative transcriptome analysis reveals dysregulation of canonical cancer molecular pathways in placenta leading to preeclampsia. Sci Rep 2013;3:2407. doi: 10.1038/srep02407
- Kumar P., Pandey K. N. Cooperative activation of Npr1 gene transcription and expression by interaction of Ets-1 and p300. Hypertension 2009;54(1):172–8. doi: 10.1161/HYPERTENSIONAHA.109.133033.
- Milani D., Pezzani L., Negri G. et al. Potential impact of fetal genotype on maternal blood pressure during pregnancy: the example of EP300. J Hypertens 2015;33(3):664–5. doi: 10.1097/HJH.0000000000000507
- Van Uitert M., Moerland P.D., Enquobahrie D.A. et al. Meta-analysis of placental transcriptome data identifies a novel molecular pathway related to preeclampsia. PLoS One 2015;10(7):e0132468. doi: 10.1371/J.pone.0132468
- Fergelot P., Van Belzen M., Van Gils J. et al. Phenotype and genotype in 52 patients with Rubinstein–Taybi syndrome caused by EP300 mutations. Am J Med Genet 2016;170(12):3069–82. doi: 10.1002/ajmg.a.37940
- Oike Y., Hata A., Mamiya T. et al. Truncated CBP protein leads to classical Rubinstein–Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum Mol Gen 1999;8(3):387–96. doi: 10.1093/hmg/8.3.387
- Coupry I., Roudaut C., Stef M. et al. Molecular analysis of the CBP gene in 60 patients with Rubinstein–Taybi syndrome. J Med Gen 2002;39(6):415–21. doi: 10.1136/jmg.39.6.415
- QIAGEN Digital Insights. CREBBP. Available at: https://portal.biobase-international.com/hgmd/pro/gene.php?gene=CREBBP.
- QIAGEN Digital Insights. EP300. Available at: https://portal.biobase-international.com/hgmd/pro/gene.php?gene=EP300.
- Bartholdi D., Roelfsema J.H., Papadia F. et al. Genetic heterogeneity in Rubinstein–Taybi syndrome: delineation of the phenotype of the first patients carrying mutations in EP300. J Med Gen 2007;44(5):327–33. doi: 10.1136/jmg.2006.046698
- Negri G., Magini P., Milani D. et al. From whole gene deletion to point mutations of EP300-positive Rubinstein–Taybi patients: new insights into the mutational spectrum and peculiar clinical hallmarks. Hum Mut 2016;37(2):175–83. doi: 10.1002/humu.22922
- Woods S.A., Robinson H.B., Kohler L.J. et al. Exome sequencing identifies a novel EP300 frame shift mutation in a patient with features that overlap Cornelia de Lange syndrome. Am J Med Genet 2014;164A(1):251-258. PMID: 24352918. doi: 10.1002/ajmg.a.36237.
- Chiang P. W., Lee N.C., Chien N. et al. Somatic and germ‐line mosaicism in Rubinstein–Taybi syndrome. Am J Med Genet A 2009;149A(7):1463–7. doi: 10.1002/ajmg.a.32948
- De Vries T.I., R Monroe G., van Belzen M.J. et al. Mosaic CREBBP mutation causes overlapping clinical features of Rubinstein–Taybi and Filippi syndromes. Eur J Hum Gen 2016;24(9):1363–6. doi: 10.1038/ejhg.2016.14
- Bjornsson H.T. The Mendelian disorders of the epigenetic machinery. Gen Res 2015;25(10):1473–81. doi: 10.1101/gr.190629.115
- Pérez-Grijalba V., García-Oguiza A., López M. et al. New insights into genetic variant spectrum and genotype–phenotype correlations of Rubinstein–Taybi syndrome in 39 CREBBP-positive patients. Mol Genet Genomic Med 2019;7(11):e972. doi: 10.1002/mgg3.972
- Bartsch O., Rasi S., Delicado A. et al. Evidence for a new contiguous gene syndrome, the chromosome 16p13. 3 deletion syndrome alias severe Rubinstein–Taybi syndrome. Hum Genet 2006;120(2):179–86. doi: 10.1007/s00439-006-0215-0
- Cohen J.L., Schrier Vergano S.A., Mazzola S. et al. EP300-related Rubinstein–Taybi syndrome: Highlighted rare phenotypic findings and a genotype–phenotype meta-analysis of 74 patients. Am J Med Genet A 2020;182(12):2926–38. doi: 10.1002/ajmg.a.61883
- Bartsch O., Labonté J., Albrecht B. et al. Two patients with EP300 mutations and facial dysmorphism different from the classic Rubinstein–Taybi syndrome. Am J Med Genet A 2010;152A(1):181–4. doi: 10.1002/ajmg.a.33153
- Solomon B.D., Bodian D.L., Khromykh A. et al. Expanding the phenotypic spectrum in EP300-related Rubinstein–Taybi syndrome. Am J Med Genet A 2015;167A(5):1111–6. doi: 10.1002/ajmg.a.36883
- López M., Seidel V., Santibáñez P. et al. First case report of inherited Rubinstein–Taybi syndrome associated with a novel EP300 variant. BMC Med Gen 2016;17(1):1–5. doi: 10.1186/s12881-016-0361-8
- Hamilton M.J., Newbury-Ecob R., Holder-Espinasse M. et al. Rubinstein–Taybi syndrome type 2: report of nine new cases that extend the phenotypic and genotypic spectrum. Clin Dysmorphol 2016;25(4):135–45. doi: 10.1097/MCD.0000000000000143
- Spena S., Gervasini C., Milani D. Ultra-rare syndromes: the example of Rubinstein–Taybi syndrome. J Pediatr Genet 2015;4(3):177–86. doi: 10.1055/s-0035-1564571
- Nowaczyk M.J.M., Nikkel S.M., White S.M. Floating–Harbor syndrome. GeneReviews®. University of Washington, Seattle, 2019.
- Hood R.L., Schenkel L.C., Nikkel S.M. et al. The defining DNA methylation signature of Floating–Harbor syndrome. Sci Rep 2016;6:38803. doi: 10.1038/srep38803
- Deardorff M.A., Noon S.E., Krantz I. D. Cornelia de Lange syndrome. GeneReviews®. University of Washington, Seattle, 2016.
- Schierding W., Horsfield J., O’Sullivan J.M. Low tolerance for transcriptional variation at cohesin genes is accompanied by functional links to disease-relevant pathways. J Med Genet 2021;58(8):534–42. doi: 10.1136/jmedgenet-2020-107095
- Cucco F., Sarogni P., Rossato S. et al. Pathogenic variants in EP300 and ANKRD11 in patients with phenotypes overlapping Cornelia de Lange syndrome. Am J Med Genet A 2020;182(7):1690–6. doi: 10.1002/ajmg.a.61611
- Lemire G., Campeau P.M., Lee B.H. KAT6B disorders. GeneReviews®. University of Washington, Seattle, 1993.
- Allis C. D., Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet 2016;17(8):487–500. doi: 10.1038/nrg.2016.59
- Negri G., Magini P., Milani D. et al. Exploring by whole exome sequencing patients with initial diagnosis of Rubinstein–Taybi syndrome: the interconnections of epigenetic machinery disorders. Hum Genet 2019;138(3):257–69. doi: 10.1007/s00439-019-01985-y
- Di Fede E., Massa V., Augello B. et al. Expanding the phenotype associated to KMT2A variants: overlapping clinical signs between Wiedemann–Steiner and Rubinstein–Taybi syndromes. Eur J Hum Genet 2021;29(1):88–98. doi: 10.1038/s41431-020-0679-8
- Jones W.D., Dafou D., McEntagart M. et al. De novo mutations in MLL cause Wiedemann–Steiner syndrome. Am J Hum Genet 2012;91(2):358–64. doi: 10.1016/j.ajhg.2012.06.008
- Ng S.B., Bigham A.W., Buckingham K.J. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010;42(9):790–93. doi: 10.1038/ng.646
- Hoischen A., van Bon B.W., Rodriguez-Santiago B. et al. De novo nonsense mutations in ASXL1 cause Bohring–Opitz syndrome. Nat Genet 2011;43(8):729–31. doi: 10.1038/ng.868
- Bramswig N.C., Lüdecke H.J., Alanay Y. et al. Exome sequencing unravels unexpected differential diagnoses in individuals with the tentative diagnosis of Coffin–Siris and Nicolaides– Baraitser syndromes. Hum Genet 2015;134(6):553–68. doi: 10.1007/s00439-015-1535-8
- Yuan B., Pehlivan D., Karaca E. et al. Global transcriptional disturbances underlie Cornelia de Lange syndrome and related phenotypes. J Clin Invest 2015;125(2):636–51. doi: 10.1172/JCI77435
Дополнительные файлы



