Стероидная миопатия у пациентов с аутоиммунной миастенией: обзор литературы

Обложка

Цитировать

Полный текст

Аннотация

Стероидная миопатия – распространенная лекарственно-индуцированная невоспалительная миопатия, которая возникает у пациентов, длительно принимающих глюкокортикостероиды для лечения различных аутоиммунных, инфекционных и онкологических заболеваний. В неврологической практике преднизолон и другие аналоги по фармакологической группе являются лекарственными средствами первого выбора патогенетической терапии ряда дизиммунных нервно-мышечных заболеваний, включая аутоиммунную миастению. Длительный прием высоких терапевтических доз стероидных препаратов для лечения аутоиммунной миастении приводит как к острому, так и к хроническому развитию индуцированной глюкокортикостероидами проксимальной мышечной слабости и атрофии. Стероидная миопатия наряду с другими нежелательными побочными эффектами терапии глюкокортикостероидами влияет на приверженность пациентов лечению и качество их жизни, поэтому улучшение понимания клинических и диагностических аспектов заболевания, а также совершенствование методов профилактики побочных эффектов являются актуальными и важными направлениями новых исследований. В настоящем обзоре представлены данные мировой литературы о методах диагностики, стратегиях профилактики и лечения стероидной миопатии.

Об авторах

С. А. Зайцевская

ФГБНУ «Научный центр неврологии»

Автор, ответственный за переписку.
Email: sona-zait@mail.ru
ORCID iD: 0000-0001-6889-5363

Софья Александровна Зайцевская

125367 Москва, Волоколамское шоссе, 80

Россия

Н. А. Супонева

ФГБНУ «Научный центр неврологии»

Email: fake@neicon.ru
ORCID iD: 0000-0003-3956-6362

125367 Москва, Волоколамское шоссе, 80

Россия

К. В. Антонова

ФГБНУ «Научный центр неврологии»

Email: fake@neicon.ru
ORCID iD: 0000-0003-2373-2231

125367 Москва, Волоколамское шоссе, 80

Россия

Д. А. Гришина

ФГБНУ «Научный центр неврологии»

Email: fake@neicon.ru
ORCID iD: 0000-0002-7924-3405

125367 Москва, Волоколамское шоссе, 80

Россия

А. М. Нарбут

ФГБНУ «Научный центр неврологии»

Email: fake@neicon.ru
ORCID iD: 0000-0003-2026-5199

125367 Москва, Волоколамское шоссе, 80

Россия

Список литературы

  1. Bowyer S., Lamothe M., Hollister J. Steroid myopathy: Incidence and detection in a population with asthma. J Allergy Clin Immunol 1985;76(2):234–42. doi: 10.1016/0091-6749(85)90708-0
  2. Dubois E. Triamcinolone in the treatment of systemic lupus erythematosus. J Am Med Assoc 1958;167(13):1590–9. doi: 10.1001/jama.1958.02990300016004
  3. Perkoff G., Silber R., Tyler F. et al. Studies in disorders of muscle. XII. Myopathy due to the administration of therapeutic amounts of 17-hydroxycorticosteroids. Am J Med 1959;26(6):891–8. doi: 10.1016/0002-9343(59)90211-6
  4. Narayanaswami P., Sanders D., Wolfe G. et al. International Consensus Guidance for Management of Myasthenia Gravis. Neurology 2021;96(3):114–22. DOI: 10.1212/ WNL.0000000000011124
  5. Sussman J., Farrugia M., Maddison P. et al. Myasthenia gravis: Association of British neurologists’ management guidelines. Pract Neurol 2015;15(3):199–206. doi: 10.1136/practneurol-2015-001126
  6. Murai H., Utsugisawa K., Motomura M. et al. The Japanese clinical guidelines 2022 for myasthenia gravis and Lambert–Eaton myasthenic syndrome. Clinical and Experimental Neuroimmunology 2023;14:19–27.doi: 10.1111/cen3.12739
  7. Wiendl H., Abicht A., Chan A. et al. Guideline for the management of myasthenic syndromes. Ther Adv Neurol Disord 2023;16:17562864231213240. doi: 10.1177/17562864231213240
  8. Gupta A., Gupta Y. Glucocorticoid-induced myopathy: Pathophysiology, diagnosis, and treatment. Indian J Endocrinol Metab 2013;17(5):913–6. doi: 10.4103/2230-8210.117215
  9. Batchelor T., Taylor L., Thaler H. et al. Steroid myopathy in cancer patients. Neurology 1997;48(5):1234–8. doi: 10.1212/WNL.48.5.1234
  10. Wu K., Michalski A., Cortes D. et al. Glucocorticoid-induced myopathy in people with asthma: A systematic review. J Asthma 2022;59(7):1396–409. doi: 10.1080/02770903.2021.1926488
  11. Buttgereit F., Da Silva J., Boers M. et al. Standardised nomenclature for glucocorticoid dosages and glucocorticoid treatment regimens: Current questions and tentative answers in rheumatology. Ann Rheum Dis 2002;61(8):718–22. doi: 10.1136/ard.61.8.718
  12. Al Efraij K., Johnson K., Wiebe D. et al. A systematic review of the adverse events and economic impact associated with oral corticosteroids in asthma. J Asthma 2019;56(12):1334–46. doi: 10.1080/02770903.2018.1539100
  13. Esteves G., Mazzolani B., Smaira F. et al. Nutritional recommendations for patients undergoing prolonged glucocorticoid therapy. Rheumatol Adv Pract 2022;6(2):rkac029. doi: 10.1093/rap/rkac029
  14. Nagashima M., Takahashi D., Mizushima T. et al. Effects of exercise in patients with connective tissue disease receiving highdose glucocorticoids: A pilot prospective cohort study. Eur J Appl Physiol 2021;121(8):2253–63. doi: 10.1007/s00421-021-04697-2
  15. Zamecnik J., Vesely D., Jakubicka B. et al. Atrophy of type II fibres in myasthenia gravis muscle in thymectomized patients: Steroid-induced change with prognostic impact. J Cell Mol Med 2009;13(8 B):2008–18. doi: 10.1111/j.1582-4934.2008.00431.x
  16. Berr C., Stieg M., Deutschbein T. et al. Persistence of myopathy in Cushing’s syndrome: Evaluation of the German Cushing’s Registry. Eur J Endocrinol 2017;176(6):737–46. doi: 10.1530/EJE-16-0689
  17. Bolland M., Holdaway I., Berkeley J. et al. Mortality and morbidity in Cushing’s syndrome in New Zealand. Clin Endocrinol (Oxf) 2011;75(4):436–42. doi: 10.1111/j.1365-2265.2011.04124.x
  18. Giraldi F., Moro M., Cavagnini F. Gender-related differences in the presentation and course of Cushing’s disease. J Clin Endocrinol Metab 2003;88(4):1554–8. doi: 10.1210/jc.2002-021518
  19. Macedo A., Almeida T., Massini D. et al. Effects of exercise training on glucocorticoid-induced muscle atrophy: Literature review. Steroids 2023;195(5):109240. doi: 10.1016/j.steroids.2023.109240
  20. Costa M., Violato N., Taboga S. et al. Reduction of insulin signalling pathway IRS-1/IRS-2/AKT/mTOR and decrease of epithelial cell proliferation in the prostate of glucocorticoid-treated rats. Int J Exp Pathol 2012;93(3):188–95. doi: 10.1111/j.1365-2613.2012.00817.x
  21. Macedo A., Krug A., Herrera N. et al. Low-intensity resistance training attenuates dexamethasone-induced atrophy in the flexor hallucis longus muscle. J Steroid Biochem Mol Biol 2014;143:357–64. doi: 10.1016/j.jsbmb.2014.05.010
  22. Ma K., Mallidis C., Bhasin S. et al. Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Metab 2003;285(2):363–71. doi: 10.1152/ajpendo.00487.2002
  23. Cho J., Fournier M., Da X. et al. Time course expression of Foxo transcription factors in skeletal muscle following corticosteroid administration. J Appl Physiol 2010;108(1):137–45. doi: 10.1152/japplphysiol.00704.2009
  24. Fappi A., De Carvalho Neves J., Sanches L. et al. Skeletal muscle response to deflazacort, dexamethasone and methylprednisolone. Cells 2019;8(5):406. doi: 10.3390/cells8050406
  25. Kanda F., Okuda S., Matsushita T. et al. Steroid myopathy: Pathogenesis and effects of growth hormone and insulin-like growth factor-I administration. Horm Res Paediatr 2001;56(1):24–8. doi: 10.1159/000048130
  26. Afifi A., Bergman R., Harvey J. Steroid myopathy. Clinical, histologic and cytologic observations. Johns Hopkins Med J 1968;123(4):158–73.
  27. Engel A. Electron microscopic observations in thyrotoxic and corticosteroid-induced myopathies. Mayo Clin Proc 1966;41(11):785–96.
  28. Walsh G., DeVivo D., Olson W. Histochemical and ultrastructural changes in rat muscle. Occurrence following adrenal corticotrophic hormone, glucocorticoids, and starvation. Arch Neurol 1971;24(1):83–93. doi: 10.1001/archneur.1971.00480310111012
  29. Horber F., Hoppeler H., Herren D. et al. Altered skeletal muscle ultrastructure in renal transplant patients on prednisone. Kidney Int 1986;30(3):411–6. doi: 10.1038/ki.1986.199
  30. Vallet B., Fourrier F., Hurtevent J. et al. Myasthenia gravis and steroid-induced myopathy of the respiratory muscles. Intensive Care Med 1992;18:424–6. doi: 10.1007/BF01694346
  31. Waclawik A., Sufit R., Beinlich B. et al. Acute myopathy with selective degeneration of myosin filaments following status asthmaticus treated with methylprednisolone and vecuronium. Neuromuscul Disord 1992;2(1):19–26. doi: 10.1016/0960-8966(92)90022-x
  32. Hatakenaka M., Soeda H., Okafuji T. et al. Steroid myopathy: Evaluation of fiber atrophy with T2 relaxation time – rabbit and human study. Radiology 2006;238(2):650–7. doi: 10.1148/radiol.2381041720
  33. Williams T., O’Hehir R., Czarny D. et al. Acute myopathy in severe acute asthma treated with intravenously administered corticosteroids. Am Rev Respir Dis 1988;137(2):460–3. doi: 10.1164/ajrccm/137.2.460
  34. Khaleeli A., Edwards R., Gohil K. et al. Corticosteroid myopathy: A clinical and pathological study. Clin Endocrinol 1983;18(2):155–66. doi: 10.1111/j.1365-2265.1983.tb03198.x
  35. Minetto M., D’Angelo V., Arvat E. et al. Diagnostic work-up in steroid myopathy. Endocrine 2018;60:219–23. doi: 10.1007/s12020-017-1472-5
  36. Weber M., Krakowski-Roosen H., Schröder L. et al. Morphology, metabolism, microcirculation, and strength of skeletal muscles in cancer-related cachexia. Acta Oncol 2009;48(1):116–24. doi: 10.1080/02841860802130001
  37. D’Antona G., Pellegrino M., Adami R. et al. The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol 2003;552(2):499–511. doi: 10.1113/jphysiol.2003.046276
  38. Brooke M., Engel W. The histographic analysis of human muscle biopsies with regard to fiber types. Neurology 1969;19(5):469–77. doi: 10.1212/WNL.19.5.469
  39. Russell D. Histological changes in the striped muscles in myasthenia gravis. J Pathol Bacteriol 1953;65(2):279–89. doi: 10.1002/path.1700650202
  40. Fenichel G. Muscle lesions in myasthenia gravis. Ann NY Acad Sci 1966;135(1):60–7. doi: 10.1111/j.1749-6632.1966.tb45463.x
  41. Martignago S., Fanin M., Albertini E. et al. Muscle histopathology in myasthenia gravis with antibodies against MuSK and AChR. Neuropathol Appl Neurobiol 2009;35(1):103–10. doi: 10.1111/j.1365-2990.2008.00965.x
  42. Pereira R., Freire de Carvalho J. Glucocorticoid-induced myopathy. Joint Bone Spine 2011;78:41–4. doi: 10.1016/j.jbspin.2010.02.025
  43. Ammini A., Tandon N., Gupta N. et al. Etiology and clinical profile of patients with Cushing’s syndrome: A single center experience. Indian J Endocrinol Metab 2014;18(1):99–105. doi: 10.4103/2230-8210.126586
  44. Olafsson E., Jones H., Guay A. et al. Myopathy of endogenous Cushing’s syndrome: A review of the clinical and electromyographic features in 8 patients. Muscle Nerve 1994;17(6):692, 693. doi: 10.1002/mus.880170625
  45. Silver E., Ochoa W. Glucocorticoid-Induced myopathy in a patient with systemic lupus erythematosus (SLE): A case report and review of the literature. Am J Case Rep 2018;19(3):277–83. doi: 10.12659/ajcr.906377
  46. Minetto M., Lanfranco F., Motta G. et al. Steroid myopathy: Some unresolved issues. J Endocrinol Invest 2011;34(5):370–5. doi: 10.1007/BF03347462
  47. Schakman O., Kalista S., Barbé C. et al. Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol 2013;45(10): 2163–72. doi: 10.1016/j.biocel.2013.05.036
  48. Haran M., Schattner A., Kozak N. et al. Acute steroid myopathy: A highly overlooked entity. QJM 2018;111(5):307–11. doi: 10.1093/qjmed/hcy031
  49. Lacomis D., Smith T., Chad D. Acute myopathy and neuropathy in status asthmaticus: Case report and literature review. Muscle Nerve 1993;16(1):84–90. doi: 10.1002/mus.880160114
  50. Knox A., Mascie-Taylor B., Muers M. Acute hydrocortisone myopathy in acute severe asthma. Thorax 1986;41(5):411, 412. doi: 10.1136/thx.41.5.411
  51. Van Marle W., Woods K. Acute hydrocortisone myopathy. BMJ 1980;281(6235):271, 272. doi: 10.1136/bmj.281.6235.271-a
  52. Panegyres P., Squier M., Mills K. et al. Acute myopathy associated with large parenteral dose of corticosteroid in myasthenia gravis. J Neurol Neurosurg Psychiatry 1993;56(6):702–4. doi: 10.1136/jnnp.56.6.702.
  53. Джериева В.С., Бровкина С.С., Волкова Н.И. Сочетание кортикостероид-индуцированной миопатии и myasthenia gravis: трудности диагностики. FOCUS Эндокринология 2020;1(1):66–70. doi: 10.47407/ef2020.1.1.0009
  54. Lotan I., Hellmann M., Wilf-Yarkoni A. et al. Exacerbation of myasthenia gravis following corticosteroid treatment: What is the evidence? A systematic review. Neurology 2021;268:4573–86. doi: 10.1007/s00415-020-10264-0
  55. Simon N. A new diagnostic tool for the detection of steroid myopathy. Clin Neurophysiol 2019;130(8):1407, 1408. doi: 10.1016/j.clinph.2019.05.019
  56. Minetto M., Lanfranco F., Botter A. et al. Do muscle fiber conduction slowing and decreased levels of circulating muscle proteins represent sensitive markers of steroid myopathy? A pilot study in Cushing’s disease. Eur J Endocrinol 2011;164(6):985–93. doi: 10.1530/EJE-10-1169
  57. Yoshikawa N., Yamamoto M., Kuribara-Souta A. et al. Amino acid profile in 18 patients with rheumatic diseases treated with glucocorticoids and BCAAs. J Nutr Sci Vitaminol (Tokyo) 2021;67(3):180–8. doi: 10.3177/jnsv.67.180
  58. Stålberg E., Sonoo M. Assessment of variability in the shape of the motor unit action potential, the “jiggle”, at consecutive discharges. Muscle Nerve 1994;17(10):1135–44. doi: 10.1002/mus.880171003
  59. Juel V. Clinical neurophysiology of neuromuscular junction disease. In: Handbook of Clinical Neurology. Ed. by K.H. Levin and P. Chauvel. Elsevier B.V., 2019. Pp. 291–303. doi: 10.1016/B978-0-444-64142-7.00055-2
  60. Somnier F., Skeie G., Aarli J. et al. EMG evidence of myopathy and the occurrence of titin autoantibodies in patients with myasthenia gravis. Eur J Neurol 1999;6(5):555–63. doi: 10.1046/j.1468-1331.1999.650555.x
  61. Санадзе А.Г., Сиднев Д.В., Галкина О.И. и др. Миастеническая миопатия. Журнал неврологии и психиатрии им. С.С. Корсакова 2007;107(9):11–6.
  62. Санадзе А.Г., Гильванова О.В. Миастения и мышечные атрофии. Журнал неврологии и психиатрии им. С.С. Корсакова 2021;121(2):79–87. doi: 10.17116/jnevro202112102179
  63. Lexell J., Henriksson-larsén K., Sjöström M. Distribution of different fibre types in human skeletal muscles 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand 1983;117(1):115–22. doi: 10.1111/j.1748-1716.1983.tb07185.x
  64. Minetto M., Botter A., Lanfranco F. et al. Muscle fiber conduction slowing and decreased levels of circulating muscle proteins after short-term dexamethasone administration in healthy subjects. J Clin Endocrinol Metab 2010;95(4):1663–71. doi: 10.1210/jc.2009-2161
  65. Beck R. Muscle fiber conduction velocity. In: Wiley Encyclopedia of Biomedical Engineering. Wiley, 2006. doi: 10.1002/9780471740360.ebs0306
  66. Blijham P., Ter Laak H., Schelhaas H. et al. Relation between muscle fiber conduction velocity and fiber size in neuromuscular disorders. J Appl Physiol 2006;100(6):1837–41. doi: 10.1152/japplphysiol.01009.2005
  67. Kemink S., Frijns J., Hermus A. et al. Body composition determined by six different methods in women bilaterally adrenalectomized for treatment of Cushing’s disease. J Clin Endocrinol Metab 1999;84(11):3991–9. doi: 10.1210/jcem.84.11.6143
  68. Hosono O., Yoshikawa N., Shimizu N. et al. Quantitative analysis of skeletal muscle mass in patients with rheumatic diseases under glucocorticoid therapy – comparison among bioelectrical impedance analysis, computed tomography, and magnetic resonance imaging. Mod Rheumatol 2015;25:257–63. doi: 10.3109/14397595.2014.935078
  69. Martucci M., McIlduff C., Shin C. et al. Quantitative ultrasound of muscle can detect corticosteroid effects. Clin Neurophysiol 2019;130(8):1460–4. doi: 10.1016/j.clinph.2019.04.709
  70. Minetto M., Caresio C., Salvi M. et al. Ultrasound-based detection of glucocorticoid-induced impairments of muscle mass and structure in Cushing’s disease. J Endocrinol Invest 2019;42(7):757–68. doi: 10.1007/s40618-018-0979-9
  71. Dunlap K., Steiner J., Hickner R. et al. The duration of glucocorticoid treatment alters the anabolic response to high-force muscle contractions. J Appl Physiol 2023;135(1):183–95. doi: 10.1152/japplphysiol.00113.2023
  72. Braith R., Welsch M., Mills R. et al. Resistance exercise prevents glucocorticoid-induced myopathy in heart transplant recipients. Med Sci Sport Exerc 1998;30(4):483–9. doi: 10.1097/00005768-199804000-00003
  73. Horber F., Scheidegger J., Grunig B. et al. Evidence that prednisone-induced myopathy is reversed by physical training. J Clin Endocrinol Metab 1985;61(1):83–8. doi: 10.1210/jcem-61-1-83
  74. LaPier T. Glucocorticoid-induced muscle atrophy. J Cardiopulm Rehabil 1997;17(2):76–84. doi: 10.1097/00008483-199703000-00002
  75. Yoshikawa N., Shimizu N., Uehara M. et al. The effects of bolus supplementation of branched-chain amino acids on skeletal muscle mass, strength, and function in patients with rheumatic disorders during glucocorticoid treatment. Mod Rheumatol 2017;27(3):508–17. doi: 10.1080/14397595.2016.1213480
  76. Ulla A., Uchida T., Miki Y. et al. Morin attenuates dexamethasonemediated oxidative stress and atrophy in mouse C2C12 skeletal myotubes. Arch Biochem Biophys 2021;704:108873. doi: 10.1016/j.abb.2021.108873
  77. Lee H., Kim Y., Nirmala F. et al. Chrysanthemum zawadskil Herbich attenuates dexamethasone-induced muscle atrophy through the regulation of proteostasis and mitochondrial function. Biomed Pharmacother 2021;136:111226. doi: 10.1016/j.biopha.2021.111226
  78. Shang Y., Kuang M., Wang Z. et al. An ultrashort peptide-based supramolecular hydrogel mimicking IGF-1 to alleviate glucocorticoid-induced sarcopenia. ACS Appl Mater Interfaces 2020;12(31):34678–88. doi: 10.1021/acsami.0c09973
  79. Chen H., Ma J., Ma X. Administration of tauroursodeoxycholic acid attenuates dexamethasone-induced skeletal muscle atrophy. Biochem Biophys Res Commun 2021;570:96–102. doi: 10.1016/j.bbrc.2021.06.102
  80. Lee M., Jeong H., Kim M.-J. et al. Nutrients against glucocorticoidinduced muscle atrophy. Foods 2022;11(5):687. doi: 10.3390/foods11050687
  81. Труш В.В., Соболев В.И. Оценка эффективности β2-адреноагониста формотерола в компенсации электрофизиологических проявлений стероидной миопатии в модельных экспериментах на животных. Патологическая физиология и экспериментальная терапия 2019;(3):35–47. doi: 10.25557/0031-2991.2019.03.35-47
  82. Труш В.В., Соболев В.И. Эффективность α-липоевой кислоты в компенсации электрофизиологических проявлений стероидной миопатии в экспериментах на животных. Экспериментальная и клиническая фармакология 2021;84(12):20–8. doi: 10.30906/0869-2092-2021-84-12-20
  83. Труш В.В., Соболев В.И. Модуляция альфакальцидолом некоторых электрофизиологических проявлений стероидной миопатии в модельных экспериментах на животных. Ученые записки Крымского федерального университета им. В.И. Вернадского. Биология. Химия 2022;8(2):198–217.
  84. Miyakoshi N., Sasaki H., Kasukawa Y. et al. Effects of a vitamin D analog, alfacalcidol, on bone and skeletal muscle in glucocorticoidtreated rats. Biomed Res 2010;31(6):329–36. doi: 10.2220/biomedres.31.329
  85. Ito S., Harada A., Kasai T. et al. Use of alfacalcidol in osteoporotic patients with low muscle mass might increase muscle mass: An investigation using a patient database. Geriatr Gerontol Int 2014;141:122–8. doi: 10.1111/ggi.12222
  86. Wang X., Yang X., Wang R. et al. Leucine alleviates dexamethasoneinduced suppression of muscle protein synthesis via synergy involvement of mTOR and AMPK pathways. Biosci Rep 2016;36(3):e00346. doi: 10.1042/BSR20160096
  87. Yamamoto D., Maki T., Herningtyas E. et al. Branched-chain amino acids protect against dexamethasone-induced soleus muscle atrophy in rats. Muscle Nerve 2010;41(6):819–27. doi: 10.1002/mus.21621
  88. Cochet C., Belloni G., Buondonno I. et al. The role of nutrition in the treatment of sarcopenia in old patients: From restoration of mitochondrial activity to improvement of muscle performance, a systematic review. Nutrients 2023;15(17):3703. doi: 10.3390/nu15173703

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 85909 от  25.08.2023.