Research and clinical application of transcranial magnetic stimulation in children with head injury: method overview
- Authors: Kanshina D.S.1, Akhadov T.A.1, Nikitin S.S.2
-
Affiliations:
- Research Institute for Urgent Pediatric Surgery and Traumatology, Moscow Healthcare Department
- Research Centre for Medical Genetics
- Issue: Vol 14, No 4 (2024)
- Pages: 71-76
- Section: LECTURES AND REVIEWS
- Published: 10.01.2025
- URL: https://nmb.abvpress.ru/jour/article/view/637
- DOI: https://doi.org/10.17650/2222-8721-2024-14-4-71-76
- ID: 637
Cite item
Full Text
Abstract
According to research, transcranial magnetic stimulation has potential as a non-invasive prognostic method to quantify neurophysiological changes of brain after traumatic brain injury (TBI). The pathophysiological basis of changes in transcranial magnetic stimulation parameters in TBI includes impaired regulation of neurotransmitter release, changes in receptor expression, damage to interneurons and microcytoarchitectonics, which provokes a disturbance in the functional balance between cortical excitation and inhibition. The vulnerability of inhibitory mechanisms of interneurons due to decreased levels of GABAB receptor-mediated cortical inhibition was found to be a peculiarity of the pediatric population with the consequences of TBI. The purpose of this publication was to analyze the most informative parameters of diagnostic transcranial magnetic stimulation in the pediatric population with the consequences of TBI based on the available literature.
About the authors
D. S. Kanshina
Research Institute for Urgent Pediatric Surgery and Traumatology, Moscow Healthcare Department
Author for correspondence.
Email: dr.d.kanshina@gmail.com
ORCID iD: 0000-0002-5142-9400
22 Bolshaya Polyanka St., Moscow 119180
Russian FederationT. A. Akhadov
Research Institute for Urgent Pediatric Surgery and Traumatology, Moscow Healthcare Department
Email: fake@neicon.ru
ORCID iD: 0000-0002-3235-8854
22 Bolshaya Polyanka St., Moscow 119180
Russian FederationS. S. Nikitin
Research Centre for Medical Genetics
Email: fake@neicon.ru
ORCID iD: 0000-0003-3292-2758
1 Moskvorechye St., Moscow 115522
Russian FederationReferences
- Seeger Т., Kirton А., Esser М. et al. Cortical excitability after pediatric mild traumatic brain injury. Brain Stimul 2017;10(2):305–14. doi: 10.1016/j.brs.2016.11.011
- Stultz D., Osburn S., Burns Т. et al. Transcranial magnetic stimulation (TMS) safety with respect to seizures: A literature review. Neuropsychiatr Dis Treat 2020;16:2989–3000. doi: 10.2147/NDT.S276635
- Major B., Rogers М., Pearce A. Using transcranial magnetic stimulation to quantify electrophysiological changes following concussive brain injury: A systematic review. Clin Exp Pharmacol Physiol 2015;42(4):394–405. doi: 10.1111/1440-1681.12363
- Scott E., Kidgell D., Frazer K. et al. The neurophysiological responses of concussive impacts: A systematic review and meta-analysis of transcranial magnetic stimulation studies. Front Hum Neurosci 2020;14:306. doi: 10.3389/fnhum.2020.00306
- Chistyakov A., Soustiel J., Hafner H. et al. Excitatory and inhibitory corticospinal responses to transcranial magnetic stimulation in patients with minor to moderate head injury. J Neurol Neurosurg Psychiatry 2001;70(5):580–7. doi: 10.1136/jnnp.70.5.580
- Semenova N.Yu., Valliulina S.A., Mamontova N.A. et al. Difficulties in diagnosing the state of motor pathways using transcranial magnetic stimulation in children after severe traumatic brain injury. Moskovskaya meditsina = Moscow Medicine 2020;6(40):91, 92. (In Russ.).
- Lapitskaya N., Coleman M., Nielsen J. et al. Disorders of consciousness: Further pathophysiological insights using motor cortex transcranial magnetic stimulation. Progress Brain Res 2009;177:191–200. doi: 10.1016/S0079-6123(09)17713-0
- Moosavi S., Ellaway P., Catley M. et al. Corticospinal function in severe brain injury assessed using magnetic stimulation of the motor cortex in man. J Neurological Sci 1999;164(2):179–86. doi: 10.1016/s0022-510x(99)00065-9
- Di Lazzaro V., Oliviero A., Profice P. et al. The diagnostic value of motor evoked potentials. Clin Neurophysiol 1999;110(7):1297–307. doi: 10.1016/s1388-2457(99)00060-7
- Chistyakov A., Soustiel J., Hafner H. et al. Altered excitabilityof the motor cortex after minor head injury revealed by transcranial magnetic stimulation. Acta Neurochirurgica 1998;140(5):467–72. doi: 10.1007/s007010050126
- Hensch T., Bilimoria P. Re-opening windows: Manipulating critical periods for brain development. Cerebrum 2012;2012:11. 12. Homberg V., Stephan K., Netz J. Transcranial stimulation of motor cortex in upper motor neuron syndrome: Its relation to the motor deficit. Electroencephalogr Clin Neurophysiol 1991;81(5):377–88. doi: 10.1016/0168-5597(91)90027-u
- Magistris M., Rosler K., Truffert A. et al. A clinical study of motor evoked potentials using a triple stimulation technique. Brain 1999;122:265–79. doi: 10.1093/brain/122.2.265
- Werhahn K., Kunesch E., Noachtar S. et al. Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 1999;517:591–7. doi: 10.1111/j.1469-7793.1999.0591t.x
- Siebner H., Dressnandt J., Auer C. Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia. Muscle Nerve 1998;21:1209–12. doi: 10.1002/(sici)1097-4598(199809)21:9<1209::aid-mus15>3.0.co;2-m
- Takeuchi N., Ikoma K., Chuma T. et al. Measurement of transcallosal inhibition in traumatic brain injury by transcranial magnetic stimulation. Brain Injury 2006;20(9):991–6. doi: 10.1080/02699050600909771
- King R., Kirton A., Zewdie E. et al. Longitudinal assessment of cortical excitability in children and adolescents with mild traumatic brain injury and persistent post-concussive symptoms. Front Neurol 2019;10:451. doi: 10.3389/fneur.2019.00451
- Ntikas M., Hunter A., Gallagher J. et al. Longer neurophysiological vs. clinical recovery following sport concussion front. Front Sports Act Living 2021;3:737712. doi: 10.3389/fspor.2021.737712
- Di Virgilio Т., Hunter А., Wilson L. et al. Evidence for acute electrophysiological and cognitive changes following routine soccer heading. EBioMedicine 2016;13:66–71. doi: 10.1016/j.ebiom.2016.10.029
- Locke М., Toepp S., Turco С. et al. Altered motor system function in post-concussion syndrome as accessed via transcranial magnetic stimulation. Clin Neurophysiol Practice 2020;5:157–64. doi: 10.1016/j.cnp.2020.07.004
- Oliviero A., Leon A., Holler I. et al. Reduced sensorimotor inhibition in the ipsilesional motor cortex in a patient with chronic stroke of the paramedian thalamus. Clin Neurophysiol 2005;116(11):2592–8. doi: 10.1016/j.clinph.2005.07.015
- Manganelli F., Ragno M., Cacchio G. et al. Motor cortex cholinergic dysfunction in CADASIL: A transcranial magnetic demonstration. Clin Neurophysiol 2008;119(2):351–5. doi: 10.1016/j.clinph.2007.10.011
- Selden N., Gitelman D., Salamon-Murayama N. et al. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 1998;121:2249–57. doi: 10.1093/brain/121.12.2249
- Everitt B., Robbins T. Central cholinergic systems and cognition. Ann Rev Psychology 1997;48:649–84. doi: 10.1146/annurev.psych.48.1.649
- Bagnato S., Boccagni C., Sant’Angelo A. et al. Patients in a vegetative state following traumatic brain injury display a reduced intracortical modulation. Clin Neurophysiol 2012;123(10):1937–41. doi: 10.1016/j.clinph.2012.03.014
- Castel-Lacanal E., Tarri M., Loubinoux I. et al. Transcranial magnetic stimulation in brain injury. Ann Fr Anesth Reanim 2014;33(2):83–7. doi: 10.1016/j.annfar.2013.11.006
- Kumar A., Zou L, Yuan X. et al. N-methyl-D-aspartate receptors: Transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model. J Neurosci Res 2002;67(6):781–6. doi: 10.1002/jnr.10181
- Wu P., Zhao Y., Haidacher S. et al. Detection of structural and metabolic changes in traumatically injured hippocampus by quantitative differential proteomics. J Neurotrauma 2013;30(9):775–88. doi: 10.1089/neu.2012.2391
- Lefebvre G., Tremblay S., Théoret H. Probing the effects of mild traumatic brain injury with transcranial magnetic stimulation of the primary motor cortex. Brain Inj 2015;29(9):1032–43. doi: 10.3109/02699052.2015.1028447
- Tremblay S., De Beaumont L., Lassonde M. et al. Evidence for the specificity of neurophysiologic dysfunctions in asymptomatic concussed athletes. J Neurotrauma 2011;28(4):493–502. doi: 10.1089/neu.2010.1615
- Tremblay S., Beaule V., Proulx S. et al. Multimodal assessment of primary motor cortex integrity following sport concussion in asymptomatic athletes. Clin Neurophysiol 2014;125(7):1371–9. doi: 10.1016/j.clinph.2013.11.040
- Shrey D., Griesbach G., Giza C. The pathophysiology of concussions in youth. Phys Med Rehabil Clin N Am 2011;22(4):577–602. doi: 10.1016/j.pmr.2011.08.002
- Giza C., Hovda D. The neurometabolic cascade of concussion. J Athl Train 2001;36(3):228–35.
- Giza C., Santa Maria N., Hovda D. N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J Neurotrauma 2006;23(6):950–61. doi: 10.1089/neu.2006.23.950
- Huusko N., Pitkänen A. Parvalbumin immunoreactivity and expression of GABAA receptor ubunits in the thalamus after experimental TBI. Neuroscience 2014;267:30–45. doi: 10.1016/j.neuroscience.2014.02.026
- Raible D., Frey L., Cruz Del Angel Y. et al. Receptor regulation after experimental traumatic brain injury. J Neurotrauma 2012;29(16):2548–54. doi: 10.1089/neu.2012.2483
- Lu H., Kobilo T., Robertson C. et al. Transcranial magnetic stimulation facilitates neurorehabilitation after pediatric traumatic brain injury. Sci Rep 2015;5:14769. doi: 10.1038/srep14769
- Miller N., Yasen A., Maynard L. et al. Acute and longitudinal changes in motor cortex function following mild traumatic brain injury. Brain Inj 2014;28(10):1270–6. doi: 10.3109/02699052.2014.915987
- Tremblay S., De Beaumont L., Lassonde M. et al. Evidence for the specificity of intracortical inhibitory dysfunction in asymptomatic concussed athletes. J Neurotrauma 2011;28(4):493–502. doi: 10.1089/neu.2010.1615
- De Beaumont L., Mongeon D., Tremblay S. et al. Persistent motor system abnormalities in formerly concussed athletes. J Athl Train 2011;46(3):234–40. doi: 10.4085/1062-6050-46.3.234
- De Beaumont L., Tremblay S., Poirier J. et al. Altered bidirectional plasticity and reduced implicit motor learning in concussed athletes. Cereb Cortex 2012;22(1):112–21. doi: 10.1093/cercor/bhr096
- Ismail F., Fatemi A., Johnston M. Cerebral plasticity: Windows of opportunity in the developing brain. Eur J Paediatr Neurol 2017;21(1):23–48. doi: 10.1016/j.ejpn.2016.07.007
Supplementary files



