Preview

Neuromuscular Diseases

Advanced search

MOLECULAR STRUCTURE OF AMYOTROPHIC LATERAL SCLEROSIS IN RUSSIAN POPULATION

https://doi.org/10.17650/2222-8721-2016-6-4-21-27

Abstract

Materials and methods. 285 Russian patients with amyotrophic lateral sclerosis (ALS) including 260 patients with a sporadic form and 25 with a familial form were examined for mutations in SOD1, C9orf72, TARDBP,  ANG and other genes and the presence of associations among polymorphic sites in ATXN2 (polyCAG) and VEGF (-2578С/А) genes.

Molecular genetic analysis was performed using direct sequencing, fragment analysis and real-time polymerase chain reaction. On the last stage, rare ALS candidate genes were evaluated using a next generation sequencing (NGS) panel.

Results. Total rate of the identified mutations in the examined ALS cohort was 9.5 %. The most frequently observed defects were mutations in the SOD1 (24.0 % in familial ALS and 4.6 % in sporadic ALS) and C9orf72 (pathological hexanucleotide repeat expansion was identified in 1.8 % cases of ALS, all sporadic) genes. The TARDBP gene didn’t contain any mutations, though in the ALS group deletion c.715-126delG located in intron 5 of the TARDBP gene was significantly over-represented – 38.0 % vs. 26.6 % (χ2 = 13.17; р = 0.002). Mutations in the ANG gene were identified in 1.05 % of ALS patients (all cases were sporadic). In 1 (0.35 %) sporadic case a G1082A mutation in the DCTN1 gene was identified. The examined group significantly more frequently carried a risk allele of the ATXN2 gene with an “intermediate” (28–33)  number of CAG repeats – 5.0 % vs. 1.7 % in the control group (χ2 = 3.89; р = 0.0486). In Russian ALS patients, an association between the disease and the presence of a risk А-allele and homozygote genotype А/А of -2578С/А polymorphism in the VEGF gene was identified (χ2 = 7.14; р = 0.008 and χ2 = 13.46; р = 0.001 for the rates in the ALS population and in the control population, respectively), which is confirmed by the odds ratio.

Conclusion. In the current article, molecular structure of ALS in the Russian population was examined, rates of individual genetic forms and mutation spectrum were established. This work is of considerable significance for medical genetic counseling and prevention of the disease in the affected families.

About the Authors

N. Yu. Abramycheva
Research Center of Neurology
Russian Federation
80 Volokolamskoe Shosse, Moscow 125367


E. V. Lysogorskaya
Research Center of Neurology
Russian Federation
80 Volokolamskoe Shosse, Moscow 125367


Yu. S. Shpilyukova
Research Center of Neurology
Russian Federation
80 Volokolamskoe Shosse, Moscow 125367


A. S. Vetchinova
Research Center of Neurology
Russian Federation
80 Volokolamskoe Shosse, Moscow 125367


M. N. Zakharova
Research Center of Neurology
Russian Federation
80 Volokolamskoe Shosse, Moscow 125367


S. N. Illarioshkin
Research Center of Neurology
Russian Federation
80 Volokolamskoe Shosse, Moscow 125367


References

1. Ingre C., Roos P.M., Piehl F. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol 2015;12(7):181–93. DOI: 10.2147/CLEP.S37505. PMID: 25709501.

2. Kenna K.P., McLaughlin R.L., Byrne S. et al. Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet 2013;50(11): 776–83. DOI: 10.1136/jmedgenet-2013-101795. PMID: 23881933.

3. Renton A., Chiò A., Traynor B. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014;17(1):17–23. DOI:10.1038/nn.3584. PMID: 24369373.

4. Rosen D.R., Siddique T., Patterson D. et al. Mutations in Cu/Zn superoxide dismutase are associated with familial amyotrophic lateral sclerosis. Nature 1993;362(6415):59–62. DOI: 10.1038/362059a0. PMID: 8446170.

5. Kaur S.J., McKeown S.R., Rashid S. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene 2016;577(2):109–18. DOI: 10.1016/j.gene.2015.11.049. PMID: 26657039.

6. Corrado L., Ratti A., Gellera C. et al. High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis. Hum Mutat 2009;30(4):688–94. DOI: 10.1002/humu.20950. PMID: 19224587.

7. Daoud H., Valdmanis P.N., Kabashi E. et al. Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. J Med Genet 2009;46(2):11–4. DOI: 10.1136/jmg.2008.062463. PMID: 18931000.

8. Liu Y., Yu J.-T., Zong Y. et al. C9orf72 mutations in neurodegenerative diseases. Mol Neurobiol 2014;49(1):386–98. DOI: 10.1007/s12035-013-8528-1. PMID: 23934648.

9. Gijselinck I., van Langenhove T., van der Zee J. et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 2012;11(1):54–65. DOI: 10.1016/S1474-4422(11)70261-7. PMID: 22154785.

10. Majounie E., Renton A.E., Mok K. et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 2012;11(4):323–30. DOI: 10.1016/S1474-4422(12)70043-1. PMID: 22406228.

11. Brooks B.R., Miller R.G., Swash M. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000;1(5):293–9. PMID: 11464847.

12. Warner J.P., Barron L.H., Goudie D. et al. A general method for the detection of large CAG repeat expansions by fluorescent PCR. J Med Genet 1996;33(12):1022–6. PMID: 9004136.

13. DeJesus-Hernandez M., Mackenzie I.R., Boeve B.F. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72(2):245–56. DOI: 10.1016/j.neuron.2011.09.011. PMID: 21944778.

14. Абрамычева Н.Ю., Федотова Е.Ю., Устинова В.В., Алексеев Я.И. Секвенирование нового поколения в диагностике заболеваний, сопровождающихся расстройствами движений. Бюллетень Национального общества по изучению болезни Паркинсона и расстройств движений 2016;(2):16–23. [Abramycheva N.Yu., Fedotova E.Yu., Ustinova V.V., Alekseev Ya.I. Next generation sequencing in diagnostics of diseases accompanied by movement disorders. Bulleten’ Natsional’nogo obschestva po izucheniyu bolezni Parkinsona i rasstroystv dvizheniy = Bulletin of the Russian National Society of Parkinson’s Disease and Movement Disorders 2016;(2):16–23. (In Russ.)].

15. Caballero-Hernandez D., Toscano M.G., Cejudo-Guillen M. et al. The ‘Omics’ of amyotrophic lateral sclerosis. Trends Mol Med 2016;22(1):53–67. DOI 10.1016/j.molmed.2015.11.001. PMID: 26691296.

16. Benatar M., Boylan K., Jeromin A. et al. ALS biomarkers for therapy development: State of the field and future directions. Muscle Nerve 2016;53(2):169–82. DOI: 10.1002/mus.24979. PMID: 26574709.

17. Vijayalakshmi K., Ostwal P., Sumitha R. et al. Role of VEGF and VEGFR2 receptor in reversal of ALS-CSF induced degeneration of NSC-34 motor neuron cell line. Mol Neurobiol 2015;51(3):995–1007. DOI: 10.1007/s12035-014-8757-y. PMID: 24880751.

18. Исмаилов Ш.М., Барыкова Ю.А., Шмаров М.М. и др. Экспериментальный подход к генной терапии болезни двигательного нейрона на основе использования генов гипоксия-индуцибельных факторов. Генетика 2014;(5):591–601. [Ismailov S.M., Barykova Yu.A., Shmarov M.M. et al. Experimental approach to gene therapy of motor neuron disease based on hypoxia-inducible factors genes. Genetika = Genetics 2014;(5):591–601. (In Russ.)].

19. Chio A., Calvo A., Mazzini L. et al. Extensive genetics of ALS: a population-based study in Italy. Neurology 2012;79(19):1983–9. DOI: 10.1212/WNL.0b013e3182735d36. PMID: 23100398.

20. Greenway M.J., Andersen P.M., Russ C. et al. ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 2006;38(4):411–3. DOI: 10.1038/ng1742. PMID: 16501576.

21. Pfister T., Sekhon R., White M. et al. Familial amyotrophic lateral sclerosis in Alberta, Canada. Amyotroph Lateral Scler Frontotemporal Degener 2013;14(4):273–7. DOI: 10.3109/21678421.2012.754044. PMID: 23286750.


Review

For citations:


Abramycheva N.Yu., Lysogorskaya E.V., Shpilyukova Yu.S., Vetchinova A.S., Zakharova M.N., Illarioshkin S.N. MOLECULAR STRUCTURE OF AMYOTROPHIC LATERAL SCLEROSIS IN RUSSIAN POPULATION. Neuromuscular Diseases. 2016;6(4):21-27. (In Russ.) https://doi.org/10.17650/2222-8721-2016-6-4-21-27

Views: 1275


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-8721 (Print)
ISSN 2413-0443 (Online)