Preview

Neuromuscular Diseases

Advanced search

Characteristics of short-patent auditory evoked potentials in children with cerebral palsy

https://doi.org/10.17650/2222-8721-2019-9-1-52-60

Abstract

Background. In children with cerebral palsy, high risk of cognitive impairments connected with sensory disintegration – delayed visual and auditory perception.

The objective – assessment of temporary and amplitude characteristics brainstem auditory evoked potentials of children with cerebral palsy.

Materials and methods. Neurological examination, retrospective analysis of magnetic resonance imaging data of brain and 2-channel brainstem auditory evoked potentials registration with left- and right-ear stimulation and analysis was performed for 60 children aged 4–17 years, with mean age 11.80 ± 0.56 years.

Results. There are no significant difference in brainstem auditory evoked potentials latencies of children’s with cerebral palsy age subgroups. A significantly increasing of III–V peak latencies of brainstem auditory evoked potentials and also I–III and I–V interpeak latencies was observed in children with cerebral palsy in comparison of control group. Latencies of different brainstem auditory evoked potentials peaks were significantly higher in children with uni- and bilateral form of cerebral palsy and speech impairment. Group with periventricular leucomalation (on magnetic resonance imaging) is characterized by significantly increased brainstem auditory evoked potentials latencies and normal interpeak intervals. These abnormalities may be linked to non-progressive impairment of brainstem acoustic afferentation.

Conclusion. Impairment of brainstem auditory evoked potentials maturation and it’s difference in various cerebral palsy forms may be potentially clinical applicable for assessment of the children and early detection of sensory impairment.

About the Authors

V. V. Dulnev
Tver State Medical University, Ministry of Health of Russia
Russian Federation

4 Sovetskaya St., Tver 170100



Т. A. Slyusar’
Tver State Medical University, Ministry of Health of Russia
Russian Federation

4 Sovetskaya St., Tver 170100



References

1. Rosenbaum P., Paneth N., Leviton A. et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol 2007;49:8–14. PMID: 17370477. DOI: 10.1111/j.1469-8749.2007.tb12610.x.

2. Cerebral palsy: modern technologies in the comprehensive diagnosis and rehabilitation of cognitive disorders. Ed. Ph. D., prof. S.A. Nemkova. Moscow: Medpraktika-M, 2013. P. 440. (In Russ.).

3. Gaynetdinova D.D., Khakimova R.F., Gaysina L.Z. Neuroimmunological aspects of the pathogenesis of cerebral palsy. Medicinskaya immunologiya = Medical immunology 2011;2–3:115–20. (In Russ.).

4. Hilgenberg A.M., Cardoso C.C., Caldas F.F. et al. Hearing rehabilitation in cerebral palsy: development of language and hearing after cochlear implantation. Braz J Otorhinolaryngol 2015;81(3):240–7. PMID: 25458256. DOI: 10.1016/j.bjorl.2014.10.002.

5. Dufresne D., Dagenais L., Shevell M.I. Epidemiology of severe hearing impairment in a population-based cerebral palsy cohort. Pediatr Neurol 2014;51(5):641–4. PMID: 25194720. DOI: 10.1016/j.pediatrneurol.2014.07.005.

6. Reid S.M., Modak M.B., Berkowitz R.G., Reddihough D.S. A population-based study and systematic review of hearing loss in children with cerebral palsy. Dev Med Child Neurol 2011;53(11):1038–45. PMID: 21895642. DOI: 10.1111/j.1469-8749.2011.04069.x.

7. Shevell M.I., Dagenais L., Hall N. The relationship of cerebral palsy subtype and functional motor impairment: a population-based study. Dev Med Child Neurol 2009;51(11):872–7. PMID: 19416339. DOI: 10.1111/j.1469-8749.2009.03269.x.

8. Delacy M.J., Reid S.M. Profile of associated impairments at age 5 years in Australia by cerebral palsy subtype and Gross Motor Function Classification System level for birth years 1996 to 2005. Dev Med Child Neurol 2016;58(2):50–6. PMID: 26777873. DOI: 10.1111/dmcn.13012.

9. Makarova I.I., Ignatova Yu.P., Markova K.B. Evoked brain potentials as a bioelectric phenomenon, reflecting the functional state of the nervous system. Verkhnevolzgskiy medicinskiy zhurnal = Upper volga medical journal 2016;3:29–36. (In Russ.).

10. Evoked potentials: a guide for doctors. Ed. Ph. D., prof. G.G. Toropina. Moscow: MEDpressinform, 2016. P. 288. (In Russ.).

11. McQuillen P. S., Ferriero D.M. Selective vulnerability in the developing central nervous system. Pediatr Neurol 2004;30(4):227–35. PMID: 15087099. DOI: 10.1016/j.pediatrneurol.2003.10.001.

12. Turchetta R., Orlando M.P., Cammeresi M.G. et al. Modifications of auditory brainstem responses (ABR): observations in full-term and pre-term newborns. J Matern Fetal Neonatal Med 2012;25(8):1342–7. PMID: 22122007. DOI: 10.3109/14767058.2011.634457.

13. Stipdonk L.W., Weisglas-Kuperus N., Franken M.C. et al. Auditory brainstem maturation in normal-hearing infants born preterm: a meta-analysis. Dev Med Child Neurol 2016;58(10):1009–15. PMID: 27168415. DOI: 10.1111/dmcn.13151.

14. Angrisani R.G., Diniz E.M., Guinsburg R. et al. Longitudinal electrophysiological study of auditory pathway in small for gestational age infants. Codas 2014;26(4):294–301. PMID: 25211688. DOI: 10.1590/2317-1782/201420140042.

15. Sokolov P.L. Features of the functional state of the structures of the brain stem with long-term effects of perinatal lesions of the central nervous system. Billuten’ VSNC SO RAMN = Bulletin of the ESSC SB RAMS 2011;1(77):137–46. (In Russ.).

16. Kolker I.A. Auditory evoked potentials in neurology. Mezhdunarodny nevriligicheskiy zhurnal = International neurological journal 2006;6(10):115–20. (In Russ.).

17. Jiang Z.D., Wu Y.Y., Liu X.Y., Wilkinson A.R. Depressed brainstem auditory function in children with cerebral palsy. J Child Neurol 2011;26(3):272–8. PMID: 20823031. DOI: 10.1177/0883073810379913.

18. Kothari R., Singh R., Singh S. et al. Neurophysiologic findings in children with spastic cerebral palsy. J Pediatr Neurosci 2010;5(1):12–7. PMID: 21042499. DOI: 10.4103/1817-1745.66671.

19. Atlas of evoked brain potentials (practical guide based on analysis of specific clinical observations). Ed. Ph. D., prof. V.V. Gnezditsky, Ph.D.O.S. Corepinoy. Ivanovo: PresSto, 2011. P. 532. (In Russ.).

20. Baldoli C., Scola E., Della Rosa P.A. et al. Maturation of preterm newborn brains: a fMRI–DTI study of auditory processing of linguistic stimuli and white matter development. Brain Struct Funct 2015;220(6):3733–51. PMID: 25244942. DOI: 10.1007/s00429-014-0887-5.


Review

For citations:


Dulnev V.V., Slyusar’ Т.A. Characteristics of short-patent auditory evoked potentials in children with cerebral palsy. Neuromuscular Diseases. 2019;9(1):52-60. (In Russ.) https://doi.org/10.17650/2222-8721-2019-9-1-52-60

Views: 962


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-8721 (Print)
ISSN 2413-0443 (Online)