Clinical and genetic characteristics of congenital muscular dystrophies (Part 1)
https://doi.org/10.17650/2222-8721-2020-10-1-10-21
Abstract
Congenital muscular dystrophy is an extremely heterogeneous group of hereditary neuromuscular diseases that are clinically characterized by muscular hypotonia, progressive muscle weakness, and dystrophic changes in the muscles. Overlapping clinical symptoms and many genes that have to be analyzed to determine the specific form of the disease in the patient make diagnosis difficult. The molecular genetic stage of diagnosis includes many different methods depending on the clinical hypothesis and their application has not lost its relevance even in the era of massive parallel sequencing. In addition to DNA sequence analysis, the analysis of muscle protein expression can also play a significant role in the diagnosis of congenital muscular dystrophy. In the review, we will consider the most important etiological, pathophysiological, clinical and laboratory data of the main forms of congenital muscular dystrophy known today.
About the Authors
P. A. ChausovaRussian Federation
Moskvorech’e St., Moscow 115522, Russia
O. P. Ryzhkova
Russian Federation
Moskvorech’e St., Moscow 115522, Russia
A. V. Polyakov
Russian Federation
Moskvorech’e St., Moscow 115522, Russia
References
1. Online Mendelian Inheritance in Man. URL: https://www.omim.ru.
2. Bonnemann C.G. Congenital Muscular Dystrophy. In: Encyclopedia of Neuroscience. Philadelphia, 2009. P. 67–74. DOI: 10.1016/B978-008045046-9.01520-5.
3. Falsaperla R., Pratico A.D., Ruggieri M. et al. Congenital muscular dystrophy: from muscle to brain. Ital J Pediatr 2016;42(1):78. DOI: 10.1186/s13052-016-0289-9. PMID:27576556.
4. Muntoni F., Voit T. The congenital muscular dystrophies in 2004: a century of exciting progress. Neuromuscul Disord 2004;14(10):635–49. DOI: 10.1016/j.nmd.2004.06.009. PMID: 15351421.
5. Bonnemann C.G., Wang C.H., Quijano-Roy S. et al. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014;24(4):289–311. DOI: 10.1016/j.nmd.2013.12.011. PMID: 24581957.
6. Kang P.B., Morrison L., Iannaccone S.T. et al. Evidence-based guideline summary: evaluation, diagnosis, and management of congenital muscular dystrophy: report of the guideline development subcommittee of the American Academy of Neurology and the practice issues review panel of the American Association of Neuromuscular
7. & Electrodiagnostic Medicine. Neurology 2015;84(13):1369–78. DOI: 10.1212/WNL.0000000000001416. PMID: 25825463.
8. Rivier F., Pierre M., Walther-Louvie U. и др. Врожденные мышечные дистрофии: классификация и диагностика. Нервно-мышечные болезни 2014;1:6–20. DOI: 10.17650/2222-8721-2014-0-1-6-14. Rivier F., Meyer P., Walther-Louvie U. et al. Congenital muscular dystrophies: classification and diagnostic strategy. Nervno-myshechnye bolezni = Neuromuscular Diseases 2014;1:6–20. (In Russ.).
9. Reed U.C. Congenital muscular dystrophy. Part II: a review of pathogenesis and therapeutic perspectives. Arq Neuropsiquiatr 2009;67(2A):343–62. DOI: 10.1590/s0004-282x2009000200035. PMID: 19547838.
10. Ge L., Zhang C., Wang Z. et al. Congenital muscular dystrophies in China. Clin Genet 2019;96(3):207–15. DOI: 10.1111/cge.13560. PMID: 31066047.
11. Noor E.R. Congenital Muscular Dystrophy. Medscape 2019. URL: https://emedicine.medscape.com/article/1180214-overview.
12. Graziano A., Bianco F., D’Amico A. et al. Prevalence of congenital muscular dystrophy in Italy: a population study. Neurology 2015;84(9):904–11. DOI: 10.1212/WNL.0000000000001303. PMID: 25653289.
13. Norwood F.L., Harling C., Chinnery P.F. et al. Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain 2009;132(Pt 11):3175–86. DOI: 10.1093/brain/awp236. PMID: 19767415.
14. Sframeli M., Sarkozy A., Bertoli M.L. et al. Congenital muscular dystrophies in the UK population: Clinical and molecular spectrum of a large cohort diagnosed over a 12-year period. Neuromuscul Disord 2017;27(9):793–803. DOI: 10.1016/j.nmd.2017.06.008.
15. Okada M., Kawahara G., Noguchi S. et al. Primary collagen VI deficiency is the second most common congenital muscular dystrophy in Japan. Neurology 2007;69(10):1035–42. DOI: 10.1212/01.wnl.0000271387.10404.4e. PMID: 17785673.
16. Liang W., Yuo C., Chen W. et al. Congenital muscular dystrophy in Taiwan: a referral center experience. Neuromuscular Disordes 2017;27:S111.
17. Diesen C., Saarinen A., Pihko H. et al. POMGnT1 mutation and phenotypic spectrum in muscle-eye-brain disease. J Med Genet 2004;41(10):e115. DOI: 10.1136/jmg.2004.020701. PMID: 15466300.
18. Gawlik K.I., Durbeej M. Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. Skelet Muscle 2011; 1(1):9. DOI: 10.1186/2044-5040-1-9. PMID: 21798088.
19. Holmberg J., Durbeej M. Laminin-211 in skeletal muscle function. Cell Adh Migr 2013;7(1):111–21. DOI: 10.4161/cam.22618. PMID: 23154401.
20. The Human Gene Mutation Database v.20.19.4. URL: https://portal.biobase-international.com.
21. Oliveira J., Gruber A., Cardoso M. et al. LAMA2 gene mutation update: toward a more comprehensive picture of the laminin- alpha2 variome and its related phenotypes. Hum Mutat 2018;39(10):1314–37. DOI: 10.1002/humu.23599. PMID: 30055037.
22. Zamurs L.K., Idoate M.A., Hanssen E. et al. Aberrant mitochondria in a Bethlem myopathy patient with a homozygous amino acid substitution that destabilizes the collagen VI alpha2 (VI) chain. J Biol Chem 2015;290(7):4272–81. DOI: 10.1074/jbc.M114.632208. PMID: 25533456.
23. Fitzgerald J., Holden P., Hansen U. The expanded collagen VI family: new chains and new questions. Connect Tissue Res 2013;54(6):345–50. DOI: 10.3109/03008207.2013.822865. PMID: 23869615.
24. lberts B., Johnson A., Lewis J. et al. Molecular Biology of the Cell. 4th edition. In New York: Garland Science, 2002. URL: https://www.ncbi.nlm.nih.gov/books/NBK21054.
25. Petit N., Lescure A., Rederstorff M. et al. Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum Mol Genet 2003;12(9):1045–53. DOI: 10.1093/hmg/ddg115. PMID: 12700173.
26. Bellinger P., Raman A.V., Reeves M.A., Berry M.J. Regulation and function of selenoproteins in human disease. Biochem J 2009;422(1):11–22. DOI:10.1042/BJ20090219. PMID: 19627257.
27. Allamand V., Richard P., Lescure A. et al. A single homozygous point mutation in a 3’untranslated region motif of selenoprotein N mRNA causes SEPN1-related myopathy. EMBO Rep 2006;7(4):450–4. DOI: 10.1038/sj.embor.7400648. PMID: 16498447.
28. Hoger T.H., Zatloukal K., Waizenegger I. et al. Characterization of a second highly conserved B-type lamin present in cells previously thought to contain only a single B-type lamin. Chromosoma 1990;100(1): 67–9. DOI:10.1007/bf00337604. PMID: 2102440.
29. Furukawa K., Hotta Y. cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J 1993;12(1):97–106. DOI: 10.1002/j.1460-2075.1993. tb05635.x. PMID: 8094052.
Review
For citations:
Chausova P.A., Ryzhkova O.P., Polyakov A.V. Clinical and genetic characteristics of congenital muscular dystrophies (Part 1). Neuromuscular Diseases. 2020;10(1):10-21. (In Russ.) https://doi.org/10.17650/2222-8721-2020-10-1-10-21