Spinal and bulbar muscular atrophy as a multisystem disease with motor neuron and muscle involvement: literature review and a case report
https://doi.org/10.17650/2222-8721-2020-10-1-81-87
Abstract
The spinal and bulbar muscular atrophy is a slowly progressive X-linked polysystemic disease associated with polyglutamine expansion in the androgen receptor gene. The mutant protein exhibits toxic properties towards neurons and myocytes. The main motor manifestations of the spinal and bulbar muscular atrophy are weakness, atrophy and fasciculation of the muscles of the limbs and bulbar group. Traditionally spinal and bulbar muscular atrophy belongs to the group of motor neuron diseases, but in recent years there is increasing evidence of a significant role of primary muscle pathology in the pathogenesis and clinical picture of this disease. This article provides a review of the literature on the pathogenesis, clinical manifestations and diagnosis of the spinal and bulbar muscular atrophy. We present a case report of the spinal and bulbar muscular atrophy with a clinical findings resembling metabolic myopathy.
About the Authors
E. O. IvanovaRussian Federation
80 Volokolamskoe shosse, Moscow 125367, Russia
E. Yu. Fedotov
Russian Federation
80 Volokolamskoe shosse, Moscow 125367, Russia
S. N. Illarioshkin
Russian Federation
80 Volokolamskoe shosse, Moscow 125367, Russia
References
1. La Spada A., Wilson E.M., Lubahn D.B. et al. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991;352:77–9. DOI: 10.1038/352077a0. PMID: 2062380.
2. Pennuto M., Rinaldi C. From gene to therapy in spinal and bulbar muscular atrophy: are we there yet? Mol Cell Endocrinol 2018;465:113–21. DOI: 10.1016/j.mce.2017.07.005. PMID: 28688959.
3. Atsuta N., Watanabe H., Ito M. et al. Natural history of spinal and bulbar muscular atrophy (SBMA): a study of 223 Japanese patients. Brain 2006;129:1446–55. DOI: 10.1093/brain/awl096. PMID: 16621916.
4. Querin G., Bertolin C., Da Re E. et al. Non-neural phenotype of spinal and bulbar muscular atrophy: results from a large cohort of Italian patients. J Neurol Neurosurg Psychiatry 2016;87(8):810–6. DOI: 10.1136/jnnp-2015-311305. PMID: 26503015.
5. Chua J.P., Lieberman A.P. Pathogenic mechanisms and therapeutic strategies in spinobulbar muscular atrophy. CNS Neurol Disord Drug Targets 2013;12(8):1146–56. DOI: 10.2174/187152731131200124. PMID: 24040817.
6. Adachi H., Katsuno M., Minamiyama M. et al. Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA patients. Brain 2005;128(Pt 3):659–70. DOI: 10.1093/brain/awh381. PMID:15659427.
7. Fischbeck K.H. Spinal and bulbar muscular atrophy overview. J Mol Neurosci 2016;58(3):317–20. DOI: 10.1007/s12031-015-0674-7. PMID: 26547319.
8. Johansen J.A., Yu Z., Mo K. et al. Recovery of function in a myogenic mouse model of spinal bulbar muscular atrophy. Neurobiol Dis 2009;34(1):113–20. DOI: 10.1016/j.nbd.2008.12.009. PMID: 19211034.
9. Ishihara H., Kanda F., Nishio H. et al. Clinical features and skewed X-chromosome inactivation in female carriers of X-linked recessive spinal and bulbar muscular atrophy. J Neurol 2001;248(10):856–60. DOI: 10.1007/s004150170069. PMID: 11697521. 10. Finsterer J., Soraru G. Onset manifestations of spinal and bulbar muscular atrophy (Kennedy’s Disease). J Mol Neurosci 2016;58(3):321–9. DOI: 10.1007/s12031-015-0663-x. PMID: 26482145.
10. Rhodes L.E., Freeman B.K., Auh S. et al. Clinical features of spinal and bulbar muscular atrophy. Brain 2009; 132(Pt 12):3242–51. DOI: 10.1093/brain/awp258. PMID: 19846582.
11. Orsucci D., Rocchi A., Caldarazzo Ienco E. et al. Myopathic involvement and mitochondrial pathology in Kennedy disease and in other motor neuron diseases. Curr Mol Med 2014;14(5): 598–602. DOI: 10.2174/1566524014666140603100131. PMID: 24894177.
12. Sorarù G., D’Ascenzo C., Polo A. et al. Spinal and bulbar muscular atrophy: skeletal muscle pathology in male patients and heterozygous females. J Neurol Sci 2008;264(1–2):100–5. DOI: 10.1016/j.jns.2007.08.012. PMID: 17854832.
13. Borgia D., Malena A., Spinazzi M. et al. Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Hum Mol Genet 2017;26(6):1087–103. DOI: 10.1093/hmg/ddx019. PMID: 28087734.
14. Yu Z., Dadgar N., Albertelli M. et al. Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model. J Clin Invest 2006;116(10):2663–72. DOI: 10.1172/JCI28773. PMID: 16981011.
15. Rocchi A., Milioto C., Parodi S. et al. Glycolytic-to-oxidative fiber-type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high-fat diet. Acta Neuropathol 2016;132:127–44. DOI: 10.1007/s00401-016-1550-4. PMID: 26971100.
16. Cortes C.J., Ling S-C., Guo L.T. et al. Muscle expression of mutant androgen receptor protein accounts for systemic and motor neuron disease phenotypes in spinal & bulbar muscular atrophy. Neuron 2014;82(2):295–307. DOI: 10.1016/j.neuron.2014.03.001. PMID: 24742458.
17. Monks D.A., Johansen J.A., Mo K. et al. Overexpression of wild-type androgen receptor in muscle recapitulates polyglutamine disease. Proc Natl Acad Sci U S A 2007;104(46):18259–64. DOI: 10.1073/pnas.0705501104. PMID: 17984063.
18. Lombardi V., Querin G., Ziff O.J. et al. Muscle and not neuronal biomarkers correlate with severity in spinal and bulbar muscular atrophy. Neurology 2019;92(11):e1205–11. DOI: 10.1212/WNL.0000000000007097. PMID: 30787165.
19. Hijikata Y., Katsuno M., Suzuki K. et al. Impaired muscle uptake of creatine in spinal and bulbar muscular atrophy. Ann Clin Transl Neurol 2016;3(7):537–46. DOI: 10.1002/acn3.324. PMID: 27386502.
20. Manzano R., Sorarú G., Grunseich C. et al. Beyond motor neurons: expanding the clinical spectrum in Kennedy’s disease. J Neurol Neurosurg Psychiatry 2018;89(8):808–12. DOI: 10.1136/jnnp-2017-316961. PMID: 29353237.
21. Finsterer J., Scorza F.A. Central nervous system abnormalities in spinal and bulbar muscular atrophy (Kennedy’s disease). Clin Neurol Neurosurg 2019;184:105426. DOI: 10.1016/j.clineuro.2019.105426. PMID: 31351215.
22. Guber R.D., Takyar V., Kokkinis A. et al. Nonalcoholic fatty liver disease in spinal and bulbar muscular atrophy. Neurology 2017;89(24):2481–90. DOI: 10.1212/wnl.0000000000004748. PMID: 29142082.
23. Francini-Pesenti F., Querin G., Martini C. et al. Prevalence of metabolic syndrome and non-alcoholic fatty liver disease in a cohort of italian patients with spinalbulbar muscular atrophy. Acta Myol 2018;37(3):204–9. PMID: 30838350.
24. Araki A., Katsuno M., Suzuki K. et al. Brugada syndrome in spinal and bulbar muscular atrophy. Neurology 2014;82:1813–21. DOI: 10.1212/WNL.0000000000000434. PMID: 24759840.
25. Querin G., Bede P., Marchand-Pauvert V. et al. Biomarkers of spinal and bulbar muscle atrophy(SBMA): a comprehensive review. Front Neurol 2018;9:844. DOI: 10.3389/fneur.2018.00844. PMID: 30364135.
26. Grunseich C., Fischbeck K.H. Spinal and bulbar muscular atrophy. Neurol Clin 2015;33(4):847–54. DOI: 10.1016/j.ncl.2015.07.002. PMID: 26515625.
27. Hashizume A., Katsuno M., Banno H. et al. Longitudinal changes of outcome measures in spinal and bulbar muscular atrophy. Brain 2012;135(Pt 9):2838–48. DOI: 10.1093/brain/aws170. PMID: 22773541.
28. Sorenson E.J., Klein C.J. Elevated creatine kinase and transaminases in asymptomatic SBMA. Amyotroph Lateral Scler 2007;8(1):62–4. DOI: 10.1080/17482960600765040. PMID: 17364438.
29. Dahlqvist J.R., Oestergaard S.T., Poulsen N.S. et al. Refining the spinobulbar muscular atrophy phenotype by quantitative MRI and clinical assessments. Neurology 2019;92(6):e548–59. DOI: 10.1212/WNL.0000000000006887. PMID: 30610091.
30. Klickovic U., Zampedri L., Sinclair C.D.J. et al. Skeletal muscle MRI differentiates SBMA and ALS and correlates with disease severity. Neurology 2019;93(9):e895–907. DOI: 10.1212/WNL.0000000000008009. PMID: 31391248.
Review
For citations:
Ivanova E.O., Fedotov E.Yu., Illarioshkin S.N. Spinal and bulbar muscular atrophy as a multisystem disease with motor neuron and muscle involvement: literature review and a case report. Neuromuscular Diseases. 2020;10(1):81-87. (In Russ.) https://doi.org/10.17650/2222-8721-2020-10-1-81-87