Клинико-генетическая характеристика врожденных мышечных дистрофий (часть 2)
Аннотация
Дистрогликанопатии – одна из групп врожденных мышечных дистрофий, возникновение которых связано с нарушением гликозилирования α-дистрогликана. Сегодня известно 18 генов, ответственных за развитие этого состояния. Во 2-й части данного обзора представлены классификация, фенотипические формы, клинические признаки, патогенез и этиология данной формы врожденных мышечных дистрофий. Помимо этого, рассмотрены вопросы молекулярной диагностики врожденных мышечных дистрофий и предоставлены сведения о современных разработках терапии данной патологии.
Об авторах
П. А. ЧаусоваРоссия
Полина Александровна Чаусова
115478 Москва, ул. Москворечье, 1
О. П. Рыжкова
Россия
115478 Москва, ул. Москворечье, 1
А. В. Поляков
Россия
115478 Москва, ул. Москворечье, 1
Список литературы
1. Godfrey C., Clement E., Mein R. et al. Refining genotype – phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 2007;130 (10):2725–35. DOI: 10.1093/brain/awm212. PMID: 17878207.
2. Endo T. Dystroglycan glycosylation and its role in alpha-dystroglycanopathies. Acta Myol 2007;26 (3):165–70. DOI: 10.1016/j.nmd.2010.07.007. PMID: 18646566.
3. Endo T. Glycobiology of α-dystroglycan and muscular dystrophy. J Biochem 2014;157 (1):1–12. DOI:10.1093/jb/mvu066. PMID: 25381372.
4. Endo T. Mammalian O-mannosyl glycans: Biochemistry and glycopathology. Proc Jpn Acad Ser B Phys Biol Sci 2019;95 (1):39–51 DOI: 10.2183/pjab.95.004. PMID: 30643095.
5. Ivanov D., Novikova V., Pokhlebkina A. Congenital disorders of glycosylation. Pediatrician (St. Petersburg) 2018;9:5–15. DOI: 10.17816/PED935–15.
6. Yoshida-Moriguchi T., Campbell K.P. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 2015;25 (7):702–13. DOI:10.1093/glycob/cwv021. PMID: 25882296.
7. Kuwabara N., Manya H., Yamada T. et al. Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of alphadystroglycan. Proc Natl Acad Sci USA 2016;113(33):9280–5 DOI: 10.1073/pnas1525545113. PMID: 27493216.
8. Online Mendelian Inheritance n Man. URL: https://www.omim.org
9. Ge L., Zhang C., Wang Z. et al. Congenital muscular dystrophies in China. Clin Genet 2019;96 (3):207–15. DOI: 10.1111/cge.13560. PMID: 31066047.
10. Diesen C., Saarinen A., Pihko H. et al. POMGnT1 mutation and phenotypic spectrum in muscle-eye-brain disease. J Med Genet 2004;41 (10):e115. DOI: 10.1136/jmg.2004.020701. PMID: 15466003.
11. Kobayashi K., Nakahori Y., Miyake M. et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 1998;394 (6691):388–92. DOI: 10.1038/28653. PMID: 9690476.
12. Dobyns W., Pagon R., Armstrong D. et al. Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet 1989;32 (2):195–210. DOI: 10.1002/ajmg.1320320213. PMID: 2494887.
13. Godfrey C., Clement E., Mein R. et al. Refining genotype – phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 2007;130 (10):2725–35. DOI: 10.1093/brain/awm212. PMID: 17878207.
14. Gershoni-Baruch R., Mandel H., Miller B. et al. Walker-Warburg syndrome with microtia and absent auditory canals. Am J Med Genet 1990;37 (1):87–91 DOI: 10.1002/ajmg.1320370120. PMID: 2240049.
15. Cormand B., Pihko H., Bayes M. et al. Clinical and genetic distinction between Walker-Warburg syndrome and muscleeye-brain disease. Neurology 2001; 56 (8):1059–69. DOI: 10.1212/wnl.56.8.1059. PMID: 11320179.
16. Beltran-Valero de Bernabe D., Currier S., Steinbrecher A. et al. Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 2002;71 (5):1033–43. DOI: 10.1086/342975. PMID: 12369018.
17. Kim D.S., Hayashi Y.K., Matsumoto H. et al. POMT1 mutation results in defective glycosylation and loss of laminin-binding activity in alpha-DG. Neurology 2004; 62 (6):1009–11. DOI:10.1136/jmg.2005.031963. PMID: 15037715.
18. van Reeuwijk J., Janssen M., van den Elzen C. et al. POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome. J Med Genet 2005;42 (12):907–12. DOI: 10.1136/jmg.2005.031963. PMID: 15894594.
19. Clement E., Mercuri E., Godfrey C. et al. Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol 2008;64 (5):573–82. DOI: 10.1002/ana.21482. PMID: 19067344.
20. Rivier F., Meyer P., Walther-Louvie U. и др. Врожденные мышечные дистрофии: классификация и диагностика. Нервно-мышечные болезни 2014;1: 6–20. DOI: 10.17650/2222-8721-2014-0-1-6-14.
21. Чаусова П.А., Рыжкова О.П., Поляков А.В. Клинико-генетическая характеристика врожденных мышечных дистрофий (часть 1). Нервно-мышечные болезни 2020;10 (1):10–21. DOI: 10.17650/2222-8721-2020-10-1-10-21.
22. Vervoort V.S., Holden K.R., Ukadike K.C. et al. POMGnT1 gene alterations in a family with neurological abnormalities. Ann Neurol 2004;56 (1): 143–8. DOI: 10.1002/ana.20172. PMID: 15236414.
23. The Human Gene Mutation Database v. 20.20.2. URL: https://portal.biobase-international.com
24. Toda T., Kobayashi K., Kondo-Iida E. et al. The Fukuyama congenital muscular dystrophy story. Neuromuscul Disord 2000;10 (3):153–9. DOI: 10.1016/s0960–8966(99)00109–1. PMID: 10734260.
25. Beltran-Valero de Bernabe D., Voit T., Longman C. et al. Mutations in the FKRP gene can cause muscleeye-brain disease and Walker-Warburg syndrome. J Med Genet 2004;41 (5):e61. DOI: 10.1136/jmg.2003.013870. PMID: 15121789.
26. Yoshioka M., Kuroki S. Clinical spectrum and genetic studies of Fukuyama congenital muscular dystrophy. Am J Med Genet 1994;53 (3):245–50. DOI: 10.1002/ajmg.1320530309. PMID: 7856660.
27. Silan F., Yoshioka M., Kobayashi K. et al. A new mutation of the fukutin gene in a non-Japanese patient. Ann Neurol 2003;53 (3):392–6. DOI: 10.1002/ana.10491. PMID: 12601708.
28. Cotarelo R.P., Valero M.C., Prados B. et al. Two new patients bearing mutations in the fukutin gene confirm the relevance of this gene in Walker-Warburg syndrome. Clin Genet 2008;73 (2):139–45. DOI: 10.1111/j.1399–0004.2007.00936.x. PMID: 18177472.
29. Toda T., Yoshioka M., Nakahori Y. et al. Genetic identity of Fukuyama-type congenital muscular dystrophy and Walker-Warburg syndrome. Ann Neurol 1995;37 (1):99–101. DOI: 10.1002/ana.410370118. PMID: 7818265.
30. Yanagisawa A., Bouchet C., Van den Bergh P.Y. et al. New POMT2 mutations causing congenital muscular dystrophy: identification of a founder mutation. Neurology 2007;69 (12):1254–60. DOI: 10.1212/01.wnl.0000268489.60809.c4. PMID: 17634419.
31. Yanagisawa A., Bouchet C., Quijano-Roy S. et al. POMT2 intragenic deletions and splicing abnormalities causing congenital muscular dystrophy with mental retardation. Eur J Med Genet 2009;52 (4):201–6. DOI: 10.1016/j.ejmg.2008.12.004. PMID: 19138766.
32. Mercuri E., Messina S., Bruno C. et al. Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Neurology 2009; 72 (21):1802–9. DOI: 10.1212/01.wnl.0000346518.68110.60. PMID: 19299310.
33. Louhichi N., Triki C., QuijanoRoy S. et al. New FKRP mutations causing congenital muscular dystrophy associated with mental retardation and central nervous system abnormalities. Identification of a founder mutation in Tunisian families. Neurogenetics 2004; 5 (1):27–34. DOI: 10.1007/s10048-003-0165-9. PMID: 14652796.
34. MacLeod H., Pytel P., Wollmann R. et al. A novel FKRP mutation in congenital muscular dystrophy disrupts the dystrophin glycoprotein complex. Neuromuscul Disord 2007;17 (4):285–9. DOI: 10.1016/j.nmd.2007.01.005. PMID: 17336067.
35. Brockington M., Blake D.J., Prandini P. et al. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alphadystroglycan. Am J Hum Genet 2001; 69 (6):1198–209. DOI: 10.1086/324412. PMID: 11592034.
36. Mercuri E., Brockington M., Straub V. et al. Phenotypic spectrum associated with mutations in the fukutin-related protein gene. Ann Neurol 2003;53 (4):537–42. DOI: 10.1002/ana.10559. PMID: 12666124.
37. Driss A., Amouri R., Ben Hamida C. et al. A new locus for autosomal recessive limbgirdle muscular dystrophy in a large consanguineous Tunisian family maps to chromosome 19q13.3. Neuromuscul Disord 2000;10 (4–5):240–6. DOI: 10.1016/s0960–8966(00)00099–7.
38. Sveen M.L., Schwartz M., Vissing J. High prevalence and phenotypegenotype correlations of limb girdle muscular dystrophy type 2I in Denmark. Ann Neurol 2006;59 (5):808–15. DOI: 10.1002/ana.20824. PMID: 16634037.
39. Lommel M., Cirak S., Willer T. et al. Correlation of enzyme activity and clinical phenotype in POMT1-associated dystroglycanopathies. Neurology 2010; 74 (2):157–64. DOI: 10.1212/WNL.0b013e3181c919d6. PMID: 20065251.
40. Bello L., Melacini P., Pezzani R. et al. Cardiomyopathy in patients with POMT1- related congenital and limb-girdle muscular dystrophy. Eur J Hum Genet 2012;20 (12):1234–9. DOI: 10.1038/ejhg.2012.71. PMID: PMC3499746.
41. Biancheri R., Falace A., Tessa A. et al. POMT2 gene mutation in limb-girdle muscular dystrophy with inflammatory changes. Biochem Biophys Res Commun 2007;363 (4):1033–7. DOI: 10.1016/j.bbrc.2007.09.066. PMID: 17923109.
42. Gaina G., Manole E., Ionica E., Budisteanu M. Clinical and molecular diagnosis in muscular dystrophies. In book: Muscular Dystrophies, 2019. IntechOpen. DOI: 10.5772/intechopen.85339. URL: https://www.intechopen.com/books/muscular-dystrophies/clinicaland-molecular-diagnosis-in-musculardystrophies.
43. Behjati S., Tarpey P.S. What is next generation sequencing? Arch Dis Child Educ Pract Ed 2013;98 (6):236–8. DOI: 10.1136/archdischild-2013–304340. PMID: 23986538.
44. Bonnemann C.G., Wang C.H., QuijanoRoy S. et al: Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014;24 (4):289– 311. DOI: 10.1016/j.nmd.2013.12.011. PMID: 24581957.
45. Pinto D. Santhera’s omigapil found safe and well-tolerated in young CMD patients in phase 1 trial. Muscular Dystrophy News Today, 2018. URL: https://musculardystrophynews.com/2018/04/05/santhera-omigapil-safe-welltolerated-cmd-children-phase-1-trial.
46. Kemaladewi D.U., Bassi P.S., Erwood S. et al. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 2019;572(7767):125–30. DOI: 10.1038/s41586-019-1430-x. PMID: 31341277.
47. Reinhard J.R., Lin S., McKee K.K. et al. Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice. Sci Transl Med 2017;9(396):4649 DOI: 10.1126/scitranslmed.aal4649. PMID: 28659438
48. Yurchenco P.D., McKee K.K. Linker protein repair of LAMA2 dystrophic neuromuscular basement membranes. Front Mol Neurosci 2019;12(305):1–10. DOI: 10.3389/fnmol.2019.00305. PMID: 31920536.
49. Cataldi M.P., Lu P., Blaeser A., Lu Q.L. Ribitol restores functionally glycosylated α-dystroglycan and improves muscle function in dystrophic FKRPmutant mice. Nature Communications 2018;9(1):3448. DOI: 10.1038/s41467-018-05990-z. PMID: 30150693.
50. Wang C.H., Bonnemann C.G., Rutkowski A. et al. Consensus statement on standard of care for congenital muscular dystrophies. J Child Neurol 2010;25(12):1559–81. DOI: 10.1177/0883073810381924. PMID: 21078917.
51. Kang P.B., Morrison L., Iannaccone S.T. et al. Evidence-based guideline summary: evaluation, diagnosis, and management of congenital muscular dystrophy: report of the Guideline Development Subcommittee of the American Academy of Neurology and the practice issues review panel of the American association of neuromuscular & Electro-diagnostic medicine. Neurology 2015;84(13):1369–78. DOI: 10.1212/WNL.0000000000001416. PMID: 25825463.
52. Wang C.H., Bonnemann C.G., Rutkowski A. et al. Семейное руководство по медицинскому уходу при врожденной мышечной дистрофии, 2010. URL: https://f-sma.ru/biblioteka/316.
Рецензия
Для цитирования:
Чаусова П.А., Рыжкова О.П., Поляков А.В. Клинико-генетическая характеристика врожденных мышечных дистрофий (часть 2). Нервно-мышечные болезни. 2020;10(2):12-21. https://doi.org/10.17650/2222-8721-2020-10-2-12-21
For citation:
Chausova P.A., Ryzhkova O.P., Polyakov A.V. Clinical and genetic characteristics of congenital muscular dystrophies (part 2). Neuromuscular Diseases. 2020;10(2):12-21. (In Russ.) https://doi.org/10.17650/2222-8721-2020-10-2-12-21