Preview

Neuromuscular Diseases

Advanced search

Clinical and genetic characteristics of congenital muscular dystrophies (part 2)

https://doi.org/10.17650/2222-8721-2020-10-2-12-21

Abstract

Dystroglycanopathy is one of the groups of congenital muscular dystrophies, the occurrence of which is associated with a disorder of α-dystroglycan glycosylation. To date, 18 genes responsible for the development of this condition are known. The 2nd part of this review presents the classification, phenotypic forms, clinical features, pathogenesis and etiology of this type of congenital muscular dystrophies. In addition, the issues of molecular diagnosis of congenital muscular dystrophies are considered and information on modern developments in the treatment of this pathology is provided.

About the Authors

P. A. Chausova
Research Centre for Medical Genetics named after academician N.P. Bochkov, Ministry of Education and Science of Russia
Russian Federation

1 Moskvorech’e St., Moscow 115522



O. P. Ryzhkova
Research Centre for Medical Genetics named after academician N.P. Bochkov, Ministry of Education and Science of Russia
Russian Federation

1 Moskvorech’e St., Moscow 115522



A. V. Polyakov
Research Centre for Medical Genetics named after academician N.P. Bochkov, Ministry of Education and Science of Russia
Russian Federation

1 Moskvorech’e St., Moscow 115522



References

1. Godfrey C., Clement E., Mein R. et al. Refining genotype – phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 2007;130 (10):2725–35. DOI: 10.1093/brain/awm212. PMID: 17878207.

2. Endo T. Dystroglycan glycosylation and its role in alpha-dystroglycanopathies. Acta Myol 2007;26 (3):165–70. DOI: 10.1016/j.nmd.2010.07.007. PMID: 18646566.

3. Endo T. Glycobiology of α-dystroglycan and muscular dystrophy. J Biochem 2014;157 (1):1–12. DOI:10.1093/jb/mvu066. PMID: 25381372.

4. Endo T. Mammalian O-mannosyl glycans: Biochemistry and glycopathology. Proc Jpn Acad Ser B Phys Biol Sci 2019;95 (1):39–51 DOI: 10.2183/pjab.95.004. PMID: 30643095.

5. Ivanov D., Novikova V., Pokhlebkina A. Congenital disorders of glycosylation. Pediatrician (St. Petersburg) 2018;9:5–15. DOI: 10.17816/PED935–15.

6. Yoshida-Moriguchi T., Campbell K.P. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 2015;25 (7):702–13. DOI:10.1093/glycob/cwv021. PMID: 25882296.

7. Kuwabara N., Manya H., Yamada T. et al. Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of alphadystroglycan. Proc Natl Acad Sci USA 2016;113(33):9280–5 DOI: 10.1073/pnas1525545113. PMID: 27493216.

8. Online Mendelian Inheritance n Man. URL: https://www.omim.org

9. Ge L., Zhang C., Wang Z. et al. Congenital muscular dystrophies in China. Clin Genet 2019;96 (3):207–15. DOI: 10.1111/cge.13560. PMID: 31066047.

10. Diesen C., Saarinen A., Pihko H. et al. POMGnT1 mutation and phenotypic spectrum in muscle-eye-brain disease. J Med Genet 2004;41 (10):e115. DOI: 10.1136/jmg.2004.020701. PMID: 15466003.

11. Kobayashi K., Nakahori Y., Miyake M. et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 1998;394 (6691):388–92. DOI: 10.1038/28653. PMID: 9690476.

12. Dobyns W., Pagon R., Armstrong D. et al. Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet 1989;32 (2):195–210. DOI: 10.1002/ajmg.1320320213. PMID: 2494887.

13. Godfrey C., Clement E., Mein R. et al. Refining genotype – phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 2007;130 (10):2725–35. DOI: 10.1093/brain/awm212. PMID: 17878207.

14. Gershoni-Baruch R., Mandel H., Miller B. et al. Walker-Warburg syndrome with microtia and absent auditory canals. Am J Med Genet 1990;37 (1):87–91 DOI: 10.1002/ajmg.1320370120. PMID: 2240049.

15. Cormand B., Pihko H., Bayes M. et al. Clinical and genetic distinction between Walker-Warburg syndrome and muscleeye-brain disease. Neurology 2001; 56 (8):1059–69. DOI: 10.1212/wnl.56.8.1059. PMID: 11320179.

16. Beltran-Valero de Bernabe D., Currier S., Steinbrecher A. et al. Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 2002;71 (5):1033–43. DOI: 10.1086/342975. PMID: 12369018.

17. Kim D.S., Hayashi Y.K., Matsumoto H. et al. POMT1 mutation results in defective glycosylation and loss of laminin-binding activity in alpha-DG. Neurology 2004; 62 (6):1009–11. DOI:10.1136/jmg.2005.031963. PMID: 15037715.

18. van Reeuwijk J., Janssen M., van den Elzen C. et al. POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome. J Med Genet 2005;42 (12):907–12. DOI: 10.1136/jmg.2005.031963. PMID: 15894594.

19. Clement E., Mercuri E., Godfrey C. et al. Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol 2008;64 (5):573–82. DOI: 10.1002/ana.21482. PMID: 19067344.

20. Rivier F., Meyer P., WaltherLouvie U. et al. Congenital muscular dystrophies: classification and diagnostic strategy. Nervno-myshechnye bolezni = Neuromuscular Diseases 2014;1:6–20. (In Russ.). DOI: 10.17650/2222-8721-2014-0-1-6-14.

21. Chausova P.A., Ryzhkova O.P., Polyakov A.V. Clinical and genetic characteristics of congenital muscular dystrophies (Part 1). Nervno-myshechnye bolezni = Neuromuscular diseases 2020; 10 (1):10–21. (In Russ.). DOI: 10.17650/2222-8721-2020-10-1-10-21.

22. Vervoort V.S., Holden K.R., Ukadike K.C. et al. POMGnT1 gene alterations in a family with neurological abnormalities. Ann Neurol 2004;56 (1): 143–8. DOI: 10.1002/ana.20172. PMID: 15236414.

23. The Human Gene Mutation Database v. 20.20.2. URL: https://portal.biobase-international.com

24. Toda T., Kobayashi K., Kondo-Iida E. et al. The Fukuyama congenital muscular dystrophy story. Neuromuscul Disord 2000;10 (3):153–9. DOI: 10.1016/s0960–8966(99)00109–1. PMID: 10734260.

25. Beltran-Valero de Bernabe D., Voit T., Longman C. et al. Mutations in the FKRP gene can cause muscleeye-brain disease and Walker-Warburg syndrome. J Med Genet 2004;41 (5):e61. DOI: 10.1136/jmg.2003.013870. PMID: 15121789.

26. Yoshioka M., Kuroki S. Clinical spectrum and genetic studies of Fukuyama congenital muscular dystrophy. Am J Med Genet 1994;53 (3):245–50. DOI: 10.1002/ajmg.1320530309. PMID: 7856660.

27. Silan F., Yoshioka M., Kobayashi K. et al. A new mutation of the fukutin gene in a non-Japanese patient. Ann Neurol 2003;53 (3):392–6. DOI: 10.1002/ana.10491. PMID: 12601708.

28. Cotarelo R.P., Valero M.C., Prados B. et al. Two new patients bearing mutations in the fukutin gene confirm the relevance of this gene in Walker-Warburg syndrome. Clin Genet 2008;73 (2):139–45. DOI: 10.1111/j.1399–0004.2007.00936.x. PMID: 18177472.

29. Toda T., Yoshioka M., Nakahori Y. et al. Genetic identity of Fukuyama-type congenital muscular dystrophy and Walker-Warburg syndrome. Ann Neurol 1995;37 (1):99–101. DOI: 10.1002/ana.410370118. PMID: 7818265.

30. Yanagisawa A., Bouchet C., Van den Bergh P.Y. et al. New POMT2 mutations causing congenital muscular dystrophy: identification of a founder mutation. Neurology 2007;69 (12):1254–60. DOI: 10.1212/01.wnl.0000268489.60809.c4. PMID: 17634419.

31. Yanagisawa A., Bouchet C., Quijano-Roy S. et al. POMT2 intragenic deletions and splicing abnormalities causing congenital muscular dystrophy with mental retardation. Eur J Med Genet 2009;52 (4):201–6. DOI: 10.1016/j.ejmg.2008.12.004. PMID: 19138766.

32. Mercuri E., Messina S., Bruno C. et al. Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Neurology 2009; 72 (21):1802–9. DOI: 10.1212/01.wnl.0000346518.68110.60. PMID: 19299310.

33. Louhichi N., Triki C., QuijanoRoy S. et al. New FKRP mutations causing congenital muscular dystrophy associated with mental retardation and central nervous system abnormalities. Identification of a founder mutation in Tunisian families. Neurogenetics 2004; 5 (1):27–34. DOI: 10.1007/s10048-003-0165-9. PMID: 14652796.

34. MacLeod H., Pytel P., Wollmann R. et al. A novel FKRP mutation in congenital muscular dystrophy disrupts the dystrophin glycoprotein complex. Neuromuscul Disord 2007;17 (4):285–9. DOI: 10.1016/j.nmd.2007.01.005. PMID: 17336067.

35. Brockington M., Blake D.J., Prandini P. et al. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alphadystroglycan. Am J Hum Genet 2001; 69 (6):1198–209. DOI: 10.1086/324412. PMID: 11592034.

36. Mercuri E., Brockington M., Straub V. et al. Phenotypic spectrum associated with mutations in the fukutin-related protein gene. Ann Neurol 2003;53 (4):537–42. DOI: 10.1002/ana.10559. PMID: 12666124.

37. Driss A., Amouri R., Ben Hamida C. et al. A new locus for autosomal recessive limbgirdle muscular dystrophy in a large consanguineous Tunisian family maps to chromosome 19q13.3. Neuromuscul Disord 2000;10 (4–5):240–6. DOI: 10.1016/s0960–8966(00)00099–7.

38. Sveen M.L., Schwartz M., Vissing J. High prevalence and phenotypegenotype correlations of limb girdle muscular dystrophy type 2I in Denmark. Ann Neurol 2006;59 (5):808–15. DOI: 10.1002/ana.20824. PMID: 16634037.

39. Lommel M., Cirak S., Willer T. et al. Correlation of enzyme activity and clinical phenotype in POMT1-associated dystroglycanopathies. Neurology 2010; 74 (2):157–64. DOI: 10.1212/WNL.0b013e3181c919d6. PMID: 20065251.

40. Bello L., Melacini P., Pezzani R. et al. Cardiomyopathy in patients with POMT1- related congenital and limb-girdle muscular dystrophy. Eur J Hum Genet 2012;20 (12):1234–9. DOI: 10.1038/ejhg.2012.71. PMID: PMC3499746.

41. Biancheri R., Falace A., Tessa A. et al. POMT2 gene mutation in limb-girdle muscular dystrophy with inflammatory changes. Biochem Biophys Res Commun 2007;363 (4):1033–7. DOI: 10.1016/j.bbrc.2007.09.066. PMID: 17923109.

42. Gaina G., Manole E., Ionica E., Budisteanu M. Clinical and molecular diagnosis in muscular dystrophies. In book: Muscular Dystrophies, 2019. IntechOpen. DOI: 10.5772/intechopen.85339. URL: https://www.intechopen.com/books/muscular-dystrophies/clinicaland-molecular-diagnosis-in-musculardystrophies.

43. Behjati S., Tarpey P.S. What is next generation sequencing? Arch Dis Child Educ Pract Ed 2013;98 (6):236–8. DOI: 10.1136/archdischild-2013–304340. PMID: 23986538.

44. Bonnemann C.G., Wang C.H., QuijanoRoy S. et al: Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014;24 (4):289– 311. DOI: 10.1016/j.nmd.2013.12.011. PMID: 24581957.

45. Pinto D. Santhera’s omigapil found safe and well-tolerated in young CMD patients in phase 1 trial. Muscular Dystrophy News Today, 2018. URL: https://musculardystrophynews.com/2018/04/05/santhera-omigapil-safe-welltolerated-cmd-children-phase-1-trial.

46. Kemaladewi D.U., Bassi P.S., Erwood S. et al. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 2019;572(7767):125–30. DOI: 10.1038/s41586-019-1430-x. PMID: 31341277.

47. Reinhard J.R., Lin S., McKee K.K. et al. Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice. Sci Transl Med 2017;9(396):4649 DOI: 10.1126/scitranslmed.aal4649. PMID: 28659438

48. Yurchenco P.D., McKee K.K. Linker protein repair of LAMA2 dystrophic neuromuscular basement membranes. Front Mol Neurosci 2019;12(305):1–10. DOI: 10.3389/fnmol.2019.00305. PMID: 31920536.

49. Cataldi M.P., Lu P., Blaeser A., Lu Q.L. Ribitol restores functionally glycosylated α-dystroglycan and improves muscle function in dystrophic FKRPmutant mice. Nature Communications 2018;9(1):3448. DOI: 10.1038/s41467-018-05990-z. PMID: 30150693.

50. Wang C.H., Bonnemann C.G., Rutkowski A. et al. Consensus statement on standard of care for congenital muscular dystrophies. J Child Neurol 2010;25(12):1559–81. DOI: 10.1177/0883073810381924. PMID: 21078917.

51. Kang P.B., Morrison L., Iannaccone S.T. et al. Evidence-based guideline summary: evaluation, diagnosis, and management of congenital muscular dystrophy: report of the Guideline Development Subcommittee of the American Academy of Neurology and the practice issues review panel of the American association of neuromuscular & Electro-diagnostic medicine. Neurology 2015;84(13):1369–78. DOI: 10.1212/WNL.0000000000001416. PMID: 25825463.

52. Wang C.H., Bonnemann C.G., Rutkowski A. et al. Family care guide for congenital muscular dystrophy, 2010. (In Russ.). URL: https://f-sma.ru/biblioteka/316.


Review

For citations:


Chausova P.A., Ryzhkova O.P., Polyakov A.V. Clinical and genetic characteristics of congenital muscular dystrophies (part 2). Neuromuscular Diseases. 2020;10(2):12-21. (In Russ.) https://doi.org/10.17650/2222-8721-2020-10-2-12-21

Views: 1110


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-8721 (Print)
ISSN 2413-0443 (Online)