Preview

Neuromuscular Diseases

Advanced search

Genetic model of motor neuron disease in B6SJL-Tg mice: new data on the dynamics of motor symptoms and immunohistochemical manifestations of the neurodegenerative process

https://doi.org/10.17650/2222-8721-2020-10-3-63-73

Abstract

Introduction. Over the past several decades, the study of mutations associated with motor neuron disease has led to the development of a number of transgenic animal models of motor neuron disease. One of the causes of the familial form of this disorder is mutations in the gene encoding Cu/Zn superoxide dismutase 1. The B6SJL-Tg (SOD1*G93A) mouse strain expresses a mutant form of human superoxide dismutase 1.
Aim of study. To assess motor functions, dynamics of survival, and morphological changes in the spinal cord of transgenic B6SJL-Tg (SOD1*G93A) mice.
Material and methods. In total, 31 animals have been studied. Starting from the age of 22 weeks, once every two weeks, the “open field” and “beam walking” motor tests were performed. The morphological changes in the spinal cord were evaluated at intermediate (26–35 weeks) and late stages (40–45 weeks). Neuronal proteins NeuN and PGP9.5, gliofibrillar protein, cyclonucleotide phosphatase (a marker of oligodendroglia) and a marker protein of microglia IBA1 were detected by immunohistochemistry; antibodies MTC02 to the outer membrane protein were used to detect mitochondria.
Results. Motor problems appeared at the age of 24–26 weeks and steadily progressed; one could see consistent paresis of the hindlimbs, then the forelimbs, which was accompanied by general hypotrophy of the animals. There was a greater variability in the timing of symptom onset and life expectancy in males compared to females. The neurodegenerative process with damage to motor neurons was accompanied by the activation of micro- and astroglia. A sharp decrease in immunoreactivity to the mitochondrial marker MTC02 was found.
Conclusion. The obtained results demonstrate new details of the development of a complex of motor and pathomorphological changes characteristic of motor neuron disease in B6SJL-Tg (SOD1*G93A) mice. Clarification of the fine dynamics of the neurodegenerative process in these animals is of great importance for monitoring the course of the disease during preclinical trials of new drugs and methods of gene therapy.

About the Authors

А. V. Stavrovskaya
Research Center of Neurology
Russian Federation
80 Volokolamskoye sh., Мoscow 125367


D. N. Voronkov
Research Center of Neurology
Russian Federation
80 Volokolamskoye sh., Мoscow 125367


E. A. Artyomova
N.F. Gamaleya National Research Center for epidemiology and microbiology, the Ministry of Health of Russia
Russian Federation
18 Gamaleya St., Мoscow 123098


B. V. Belugin
N.F. Gamaleya National Research Center for epidemiology and microbiology, the Ministry of Health of Russia
Russian Federation
18 Gamaleya St., Мoscow 123098


М. М. Shmarov
N.F. Gamaleya National Research Center for epidemiology and microbiology, the Ministry of Health of Russia
Russian Federation
18 Gamaleya St., Мoscow 123098


N. G. Yamshchikova
Research Center of Neurology
Russian Federation
80 Volokolamskoye sh., Мoscow 125367


А. S. Gushchina
Research Center of Neurology
Russian Federation
80 Volokolamskoye sh., Мoscow 125367


А. S. Olshansky
Research Center of Neurology
Russian Federation
80 Volokolamskoye sh., Мoscow 125367


B. S. Naroditskiy
N.F. Gamaleya National Research Center for epidemiology and microbiology, the Ministry of Health of Russia
Russian Federation
18 Gamaleya St., Мoscow 123098


S. N. Illarioshkin
Research Center of Neurology
Russian Federation
80 Volokolamskoye sh., Мoscow 125367


References

1. Завалишин И.А., Захарова М.Н. Боковой амиотрофический склероз Журнал неврологии и психиатрии им. С.С. Корсакова 1999;4:60–4. [Zavalishin I.A., Zakharova M.N. Amyotrophic lateral sclerosis. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = Journal of neurology and psychiatry named after S.S. Korsakov 1999;4:60–4. (In Russ.)].

2. Brenner D., Weishaupt J.H. Update on amyotrophic lateral sclerosis genetics. Curr Opin Neurol 2019;32(5):735–9. DOI: 10.1097/WCO.0000000000000737. PMID: 31335339.

3. Burk K., Pasterkamp R.J. Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathol 2019;137(6): 859–77. DOI: 10.1007/s00401-019-01964-7. PMID: 30721407.

4. Andersen P.M. Genetics of sporadic ALS. Amyotrophic lateral sclerosis and other motor neuron disorders 2001;2(1):37–41. DOI: 10.1080/14660820152415726. PMID: 11465923.

5. Иллариошкин С.Н. Генетика бокового амиотрофического склероза. В кн.: Боковой амиотрофический склероз. Руководство для врачей Под. ред. И.А. Завалишина. М.: Евразия плюс, 2007. С. 229–255. [Illarioshkin S.N. Genetics of lateral amyotrophic sclerosis. In book: Lateral amyotrophic sclerosis. Guide for doctors. Ed. by I.A. Zavalishin. M.: Eurasia plus, 2007. P. 229–55. (In Russ.)].

6. Andersen P.M., Al-Chalabi А. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 2011;7:603–15. DOI: 10.1038/nrneurol.2011.150. PMID: 21989245.

7. Rosen D.R., Siddique T., Patterson D. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;362(6415):59–62. DOI: 10.1038/362059a0. PMID: 8446170.

8. Скворцова В.И., Смирнов А.П., Алехин А.В., Ковражкина Е.А. Факторы риска бокового амиотрофического склероза: исследование «случай-контроль». Журнал неврологии и психиатрии им. С.С. Корсакова 2009;109(2): 69–72. PMID: 19385123. [Skvortsova V.I., Smirnov A.P., Alekhin A.V., Kovrazhkina E.A. Risk factors of lateral amyotrophic sclerosis: a case-control study. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = Journal of neurology and psychiatry named after S.S. Korsakov 2009;109(2):69–72 (In Russ.)].

9. Brown R.C., Lockwood A.H., Sonawane B.R. Neurodegenerative diseases: an overview of environmental risk factors environ health perspect 2005;113:1250–6. DOI: 10.1289/ehp.7567. PMID: 16140637.

10. Cellura E., Spataro R., Taiello A.C., La Bella V. Factors affecting the diagnostic delay in amyotrophic lateral sclerosis. Clin Neurol Neurosurg 2012;114(6):550–4. DOI: 10.1016/j.clineuro.2011.11.026. PMID: 22169158.

11. Васильев А.В. Клинико-биохимические особенности бокового амиотрофического склероза у лиц молодого возраста. Автореф. дис. … канд. мед. наук. Москва, 2008. 30 с. [Vasiliev A.V. Clinical and biochemical features of amyotrophic lateral sclerosis in young people. Avtoref. dis. … kand. med. nauk. Moscow, 2008. 30 p. (In Russ.)].

12. Мухамедьяров М.А., Петров А.М., Григорьев П.Н. и др. Боковой амиотрофический склероз: современные представления о патогенезе и экспериментальные модели. Журнал высшей нервной деятельности им. И.П. Павлова 2018;68(5):551–66. [Mukhamediarov M.A., Petrov A.M., Grigoryev P.N. et al. Amyotrophic Lateral Sclerosis: Modern Views on the Pathogenesis and Experimental Models. Zhurnal vysshei nervnoi deiatelnosti im. I.P. Pavlova = Journal of higher nervous activity named after I.P. Pavlova 2018;68(5):511–66. (In Russ.)]. DOI: 10.1134/S0044467718050106.

13. Kong J., Xu Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci 1998;18(9):3241–50. DOI: 10.1523/JNEUROSCI.18-09-03241.1998. PMID: 547233.

14. Дейкин А.В. Ковражкина Е.А. Овчинников Р.К. и др. Модель бокового амиотрофического склероза на основе линии трансгенных мышей, экспрессирующих мутантную форму FUS белка человека. Журнал неврологии и психиатрии им. С.С. Корсакова 2014;114(8):62–9. PMID: 25345633. [Deĭkin A.V., Kovrazhkina E.A., Ovchinnikov R.K. et al. A mice model of amyotrophic lateral sclerosis expressing mutant human FUS protein. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = Journal of neurology and psychiatry named after S.S. Korsakov 2014;114(8):62–9. (In Russ.)].

15. Каркищенко Н.Н., Грачев С.В. Руководство по лабораторным животным и альтернативным моделям в биомедицинских исследованиях. Москва: Профиль, 2010. 358 с. [Karkishchenko N.N. Guide for laboratory animals and alternative models in biomedical research. Moscow: Profil’, 2010. 358 p. (In Russ.)].

16. Lillie R.D., Fullmer H.M. Histopathologic technic and practical histochemistry. New York: McGraw-Hill, 1976. 942 p.

17. Genç B., Lagrimas A.K.B., Kuru P. et al. Visualization of sensory neurons and their projections in an upper motor neuron reporter line. PLoS One 2015;10(7):e0132815. DOI: 10.1371/journal.pone.0132815. PMID: 26222784.

18. Scaricamazza S., Salvatori I., Giacovazzo G. et al. Skeletal-muscle metabolic reprogramming in ALSSOD1G93A mice predates disease onset and is a promising therapeutic Target. iScience 2020;23(5):101087. DOI: 10.1016/j.isci.2020.101087. PMID: 32371370.

19. Gurney M., Pu H., Chiu A. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994;264(5166):1772–5. DOI: 10.1126/science.8209258. PMID: 8209258.

20. Feeney S.J., McKelvie P.A., Austin L. et al. Presymptomatic motor neuron loss and reactive astrocytosis in the SOD1 mouse model of amyotrophic lateral sclerosis. Muscle Nerv 2001;24(11):1510–9. DOI: 10.1002/mus.1176. PMID: 29234096.

21. Ayers J.I., McMahon B., Gill S. et al. Relationship between mutant Cu/Zn superoxide dismutase 1 maturation and inclusion formation in cell models. J Neurochem 2017;140(1):140–50. DOI: 10.1111/jnc.13864. PMID: 27727458.

22. Gill C., Phelan J.P., Hatzipetros T. et al. SOD1-positive aggregate accumulation in the CNS predicts slower disease progression and increased longevity in a mutant SOD1 mouse model of ALS. Sci Rep 2019;9(1):6724. DOI: 10.1038/s41598-019-43164-z. PMID: 26222784.

23. Lalancette-Hebert M., Sharma A., Lyashchenko A.K., Shneider N.A. Gamma motor neurons survive and exacerbate alpha motor neuron degeneration in ALS. Proc Natl Acad Sci 2016;113(51):E8316–25. DOI: 10.1073/pnas.1605210113. PMID: 27930290.

24. Falgairolle M., O’Donovan M.J. Motoneuronal spinal circuits in degenerative motoneuron disease. Front Mol Neurosci 2020;13. DOI: 10.3389/fnmol. 2020.00074. PMID: 32523513.

25. Liu Y., Fallon L., Lashuel H.A. et al. The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson’s disease susceptibility. Cell 2002;111(2):209–18. DOI: 10.1016/S0092-8674(02)01012-7. PMID: 12408865.

26. Zhu S., Wuolikainen A., Wu J. et al. Targeted multiple reaction monitoring analysis of CSF identifies UCHL1 and GPNMB as candidate biomarkers for ALS. J Mol Neurosci 2019;69(4):643–57. DOI: 10.1007/s12031-019-01411-y. PMID: 31721001.

27. Smith E.F., Shaw P.J., De Vos K.J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 2019;710:132933. DOI: 10.1016/j.neulet.2017.06.052. PMID: 28669745.

28. De Vos K.J., Chapman A.L., Tennant M.E. et al. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum Mol Genet 2007;16(22):2720–8. DOI: 10.1093/hmg/ddm226. PMID: 17725983.

29. Magrané J., Cortez C., Gan W.-B., Manfredi G. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet 2014;23(6):1413–24. DOI: 10.1093/hmg/ddt528. PMID: 24154542.

30. Tan W., Pasinelli P., Trotti D. Role of mitochondria in mutant SOD1 linked amyotrophic lateral sclerosis. Biochim Biophys Acta – Mol Basis Dis 2014;1842(8):1295–301. DOI: 10.1016/j.bbadis.2014.02.009. PMID: 28669745.

31. Cowan D.B., Yao R., Thedsanamoorthy J.K. et al. Transit and integration of extracellular mitochondria in human heart cells. Sci Rep 2017;7(1):17450. DOI: 10.1038/s41598-017-17813-0. PMID: 29234096.

32. Li Q., Vande Velde C., Israelson A. et al. ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import. Proc Natl Acad Sci 2010;107(49):21146–51. DOI: 10.1073/pnas.1014862107. PMID: 21078990.

33. Serio A., Patani R. Concise review: the cellular conspiracy of amyotrophic lateral sclerosis. Stem Cells 2018;36(3): 293–303. DOI: 10.1002/stem.2758. PMID: 29235200.

34. Boillee S., Yamanaka K., Lobsiger C.S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 2006;312(5778):1389–92. DOI: 10.1126/science.1123511. PMID: 16741123.

35. Yamanaka K., Chun S.J., Boillee S. et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 2008;11(3):251–3. DOI: 10.1038/nn2047. PMID: 18246065.

36. Frakes A.E., Ferraiuolo L., HaidetPhillips A.M. et al. Microglia induce motor neuron death via the classical NF-κB Pathway in amyotrophic lateral sclerosis. Neuron 2014;81(5):1009–23. DOI: 10.1016/j.neuron.2014.01.013. PMID: 24607225.

37. Papadeas S.T., Kraig S.E., O’Banion C. et al. Astrocytes carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron degeneration in vivo. Proc Natl Acad Sci 2011;108(43):17803–8. DOI: 10.1073/pnas.1103141108. PMID: 21969586.

38. Philips T., Bento-Abreu A., Nonneman A. et al. Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain 2013;136(2):471–82. DOI: 10.1093/brain/aws339. PMID: 23378219.


Review

For citations:


Stavrovskaya А.V., Voronkov D.N., Artyomova E.A., Belugin B.V., Shmarov М.М., Yamshchikova N.G., Gushchina А.S., Olshansky А.S., Naroditskiy B.S., Illarioshkin S.N. Genetic model of motor neuron disease in B6SJL-Tg mice: new data on the dynamics of motor symptoms and immunohistochemical manifestations of the neurodegenerative process. Neuromuscular Diseases. 2020;10(3):63-73. (In Russ.) https://doi.org/10.17650/2222-8721-2020-10-3-63-73

Views: 825


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-8721 (Print)
ISSN 2413-0443 (Online)