Нервно-мышечные болезни

Расширенный поиск

Проксимальная спинальная мышечная атрофия 5q

Полный текст:

Об авторе

статья Редакционная


Список литературы

1. Brzustowicz L.M., Lehner T., Castilla L.H. et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2 – q13.3. Nature 1990;344:540–1. DOI: 10.1038/344540a0. PMID: 2320125.

2. Burglen L., Lefebvre S., Clermont O. et al. Structure and organization of the human survival motor neuron (SMN) gene. Genomics 1996a;32:479–82. DOI: 10.1006/geno.1996.0147. PMID: 8838816.

3. Lorson C.L., Hahnen E., Androphy E.J. et al. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA 1999;96:6307–11. DOI: 10.1073/pnas.96.11.6307. PMID: 10339583.

4. Lefebvre S., Burglen L., Reboullet S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995;80:155–65. DOI: 10.1016/0092-8674(95)90460-3. PMID: 7813012.

5. Harada Y., Sutomo R., Sadewa A.H. et al. Correlation between SMN2 copy number and clinical phenotype of spinal muscular atrophy: three SMN2 copies fail to rescue some patients from the disease severity. J Neurol 2002;249(9):1211–9. DOI: 10.1007/s00415-002-0811-4. PMID: 12242541.

6. Jedrzejowska M., Milewski M., Zimowski J. et al. Phenotype modifiers of spinal muscular atrophy: the number of SMN2 gene copies, deletion in the NAIP gene and probably gender influence the course of the disease. Acta Biochim Pol 2009;56:103–8. DOI: 10.18388/abp.2009_2521. PMID: 19287802.

7. Butchbach M.E.R. Copy number variations in the survival motor neuron genes: implications for spinal muscular atrophy and other neurodegenerative diseases. Front Mol Biosci 2016;3:7. DOI: 10.3389/fmolb.2016.00007. PMID: 27014701.

8. Prior T.W., Swoboda K.J., Scott H.D. et al. Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2. Am J Med Genet 2004;130A:307–10. DOI: 10.1002/ajmg.a.30251. PMID: 15378550.

9. Tizzano E., Baiget M. Molecular bases of spinal muscular atrophy: the survival motoneuron gene. Contributions to Science 2001;2:35–42.

10. Burghes A.H.M., Beattie C.E. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 2009;10(8):597–609. DOI: 10.1038/nrn2670. PMID: 19584.

11. Rossoll W., Bassell G.J. Spinal muscular atrophy and a model for survival of motor neuron protein function in axonal ribonucleoprotein complexes. Results Probl Cell Differ 2009;48:289–326. DOI: 10.1007/400_2009_4. PMID: 19343312.

12. Calucho M., Bernal S., Alías L. et al. Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord 2018;28(3):208–15. DOI: 10.1016/j.nmd.2018.01.003. PMID: 29433793.

13. Bernal S., Alías L., Barceló M.J. et al. The c.859G>C variant in the SMN2 gene is associated with both type II and III SMA and originates from a common ancestor. J Med Genet 2010;47(9):640–2. DOI: 10.1136/jmg.2010.079004.

14. Hosseinibarkooie S., Peters M., TorresBenito L. et al. The power of human protective modifiers: PLS3 and CORO1C unravel impaired endocytosis in spinal muscular atrophy and rescue SMA phenotype. Am J Hum Genet 2016;99(3):647–65. DOI: 10.1016/j.ajhg.2016.07.014.

15. Kaczmarek A. Analysis of reduced neurocalcin delta (NCALD) as a protective modifier in mouse models of spinal muscular atrophy (SMA). PhD thesis, Universität zu Köln, Köln, 2016.

16. Janzen E., Mendoza-Ferreira N., Hosseinibarkooie S. et al. CHP1 reduction ameliorates spinal muscular atrophy pathology by restoring calcineurin activity and endocytosis. Brain 2018;141(8):2343–61. DOI: 10.1093/brain/awy167. PMID: 29961886.

17. Zheleznyakova G.Y., Voisin S., Kiselev A.V. et al. Genome-wide analysis shows association of epigenetic changes in regulators of Rab and Rho GTPases with spinal muscular atrophy severity. Eur. J Hum Genet 2013;21:988–93. DOI: 10.1038/ejhg.2012.293. PMID: 23299920

18. Zheleznyakova G.Y., Nilsson E.K., Kiselev A.V. et al. Methylation levels of SLC23A2 and NCOR2 genes correlate with spinal muscular atrophy severity. PloS One 2015;10(3):e0121964. DOI: 10.1371/journal.pone.0121964. PMID: 25821969.

19. Maretina M.A., Egorova A.A., Baranov V.S., Kiselev A.V. DYNC1H1 gene methylation correlates with severity of spinal muscular atrophy. Ann Hum Genet 2019;83(2):73–81. DOI: 10.1111/ahg.12288.

20. Mercuri E., Finkel R.S., Muntoni F. et al. SMA Care Group. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 2018;28(2):103–15.

21. Ogino S., Leonard D.G., Rennert H. et al. Genetic risk assessment in carrier testing for spinal muscular atrophy. Am J Med Genet 2002;110:301–7. DOI: 10.1002/ajmg.10425.

22. Prior T.W., Snyder P.J., Rink B.D. et al. Newborn and carrier screening for spinal muscular atrophy. Am J Med Genet A 2010;152A:1605–7.

23. Zabnenkova V.V., Dadali E.L., Spiridonova M.G. et al. Spinal muscular atrophy carrier frequency in Russian Federation. ASHG 2016. P. 2476W.

24. Dubowitz V. Very severe spinal muscular atrophy (SMA type 0): an expanding clinical phenotype. Eur J Paediatr Neurol 1999;3(2):49–51.

25. Pearn J.H., Wilson J. Acute WerdnigHoffmann disease: acute infantile spinal muscular atrophy. Arch Dis Child 1973;48(6):425–30. DOI: 10.1136/adc.48.6.425. PMID: 4712772.

26. Darras B.T., Markowitz J.A., Monani U.R., De Vivo D.C. Neuromuscular disorders of infancy, childhood, and adolescence (second edition). Academic Press, 2015. P. 117–45.

27. Prior T.W., Leach M.E., Finanger E. Spinal muscular atrophy. In: Adam M.P., Ardinger H.H., Pagon R.A. et al., editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2019.

28. Russman B.S. Spinal muscular atrophy: clinical classification and disease heterogeneity. J Child Neurol 2007;22(8):946–51. DOI: 10.1177/0883073807305673.

29. Mellies U., Dohna-Schwake C., Stehling F., Voit T. Sleep disordered breathing in spinal muscular atrophy. Neuromuscul Disord 2004;14(12):797–803. DOI: 10.1016/j.nmd.2004.09.004.

30. Влодавец Д.В., Харламов Д.А., Артемьева С.Б., Белоусова Е.Д. Федеральные клинические рекомендации (протоколы) по диагностике и лечению спинальных мышечных атрофий у детей. 2013. 32 с. [URL:].

31. Sproule D.M., Montes J., Montgomery M., et al. Increased fat mass and high incidence of overweight despite low body mass index in patients with spinal muscular atrophy. Neuromuscul Disord 2009;19(6):391–6. DOI: 10.1016/j.nmd.2009.03.009. PMID: 19427208.

32. Chen Y.S., Shih H.H., Chen T.H. et al. Prevalence and risk factors for feeding and swallowing difficulties in spinal muscular atrophy types II and III. J Pediatr 2012;160(3):447–51.e1. DOI: 10.1016/j.jpeds.2011.08.016.

33. Wijngaarde C.A., Veldhoen E.S., Van Eijk R.P.A. et al. Natural history of lung function in spinal muscular atrophy orphanet. J Rare Dis 2020;10,15(1):88. DOI: 10.1186/s13023-020-01367-y. PMID: 32276635.

34. Fujak A., Raab W., Schuh A. et al. Natural course of scoliosis in proximal spinal muscular atrophy type II and IIIa: descriptive clinical study with retrospective data collection of 126 patients. BMC Musculoskelet Disord 2013;14:283. DOI: 10.1186/1471-2474-14-283. PMID: 24093531.

35. Kouwenhoven J.W., Van Ommeren P.M., Pruijset H.E., Castelein R.M. Spinal decompensation in neuromuscular disease. Spine (Phila Pa 1976) 2006;31(7):E188–91. DOI: 10.1097/01.brs.0000208131.42824.c3.

36. Mazzone E., De Sanctis R., Fanelli L. et al. Hammersmith Functional Motor Scale and Motor Function Measure-20 in non ambulant SMA patients. Neuromuscul Disord 2014;24(4):347–52. DOI: 10.1016/j.nmd.2014.01.003.

37. Montes J., McDermott M.P., Martens W.B. et al. Muscle Study Group and the Pediatric Neuromuscular Clinical Research Network. Six-Minute Walk Test demonstrates motor fatigue in spinal muscular atrophy. Neurology 2010;74(10):833–8. DOI: 10.1212/WNL.0b013e3181d3e308.

38. Glanzman A.M., Mazzone E., Main M. et al. The Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): test development and reliability. Neuromuscul Disord 2010;20(3):155–61. DOI: 10.1016/j.nmd.2009.11.014.

39. Mazzone E.S., Mayhew A., Montes J. et al. Revised upper limb module for spinal muscular atrophy: Development of a new module. Muscle Nerve 2017;55(6):869–74. DOI: 10.1002/mus.25430.

40. Li L., Zhou W.J., Fang P. et al. Evaluation and comparison of three assays for molecular detection of spinal muscular atrophy. Clin Chem Lab Med 2017;55(3):358–67. PMID: 27754957. DOI: 10.1515/cclm-2016-0275.

41. Jin Y.W., Qu Y.J., Wang H. et al. Limitation of PCR-RFLP method for the detection of genetic mutations in spinal muscular atrophy. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2012;29(1): 34–7. PMID: 22311488. DOI: 10.3760/cma.j.issn.1003-9406.2012.01.009.

42. Yang L., Cao Y.Y., Qu Y.J. et al. Sanger sequencing for the diagnosis of spinal muscular atrophy patients with survival motor neuron gene 1 compound heterozygous mutation. Zhonghua Yi Xue Za Zhi 2017;97(6):418–23. PMID: 28219127. DOI: 10.3760/cma.j.issn.0376-2491.2017.06.004.

43. Yinhong Z., Jing H., Yunqian Z. et al. The analysis of the association between the copy numbers of survival motor neuron gene 2 and neuronal apoptosis inhibitory protein genes and the clinical phenotypes in 40 patients with spinal muscular atrophy: observational study medicine (Baltimore) 2020;99(3):e18809. PMID: 32011487. DOI: 10.1097/MD.0000000000018809.

44. MacDonald W.K., Hamilton D., Kuhle S. SMA carrier testing: a meta-analysis of differences in test performance by ethnic group. Prenat Diagn 2014;34(12):1219–26. PMID: 25059567. DOI: 10.1002/pd.4459.

45. Rudnik-Schöneborn S., Lützenrath S., Borkowska J. Analysis of creatine kinase activity in 504 patients with proximal spinal muscular atrophy types I–III from the point of view of progression and severity. Eur Neurol 1998;39(3):154–62. PMID: 9605392. DOI: 10.1159/000007926.

46. Bersanini C., Khirani S., Ramirez A. et al. Nocturnal hypoxaemia and hypercapnia in children with neuromuscular disorders. Eur Respir J 2012;39(5):1206–12. PMID: 22135279. DOI: 10.1183/09031936.00087511.

47. Ørngreen M.C., Zacho M., Hebert A. et al. Patients with severe muscle wasting are prone to develop hypoglycemia during fasting. Neurology 2003;61(7):997–1000. PMID: 14557579. DOI: 10.1212/01.wnl.0000086813.59722.72.

48. Hausmanowa-Petrusewicz I., Karwańska A. Electromyographic findings in different forms of infantile and juvenile proximal spinal muscular atrophy. Muscle Nerve 1986;9(1):37–46. PMID: 3951479. DOI: 10.1002/mus.880090106.

49. Bromberg M.B., Swoboda K.J. Motor unit number estimation in infants and children with spinal muscular atrophy. Muscle Nerve 2002;25(3):445–7. PMID: 11870724. DOI: 10.1002/mus.10050.

50. Oudeman J., Eftimov F., Strijkers G.J. et al. Diagnostic accuracy of MRI and ultrasound in chronic immune-mediated neuropathies. Neurology 2020;7;94(1):e62–74. PMID: 31827006. DOI: 10.1212/WNL.0000000000008697.

51. Zalneraitis E.L., Halperin J.J., Grunnet M.L. et al. Muscle biopsy and the clinical course of infantile spinal muscular atrophy. J Child Neurol 1991;6(4):324–8. PMID: 1940134. DOI: 10.1177/088307389100600407.

52. Wijngaarde C.A., Blank A.C., Stam M. et al. Cardiac pathology in spinal muscular atrophy: a systematic review. Orphanet J Rare Dis 2017;12:67. PMID: 28399889. DOI: 10.1186/s13023-017-0613-5.

53. Palladino A., Passamano L., Taglia A. et al. Low bone mineral density and fractures are highly prevalent in pediatric patients with spinal muscular atrophy regardless of disease severity. Neuromuscul Disord 2017;27(4):331–7. PMID: 28258940. DOI: 10.1016/j.nmd.2017.01.019.

54. Wasserman H.M., Hornung L.N., Stenger P.J., Rutter M.M. Low bone mineral density and fractures are highly prevalent in pediatric patients with spinal muscular atrophy regardless of disease severity. Neuromuscul Disord 2017;27(4):331–7. PMID: 28258940. DOI: 10.1016/j.nmd.2017.01.019.

55. Vai S., Bianchi M.L., Moroni I. et al. Bone and spinal muscular atrophy. Bone 2015;79:116–20. PMID: 26055105. DOI: 10.1016/2Fj.nmd.2017.01.019.

56. Chua K., Tan C.Y., Chen Z. et al. Longterm follow-up of pulmonary function and scoliosis in patients with Duchenne’s muscular dystrophy and spinal muscular atrophy. J Pediatr Orthop 2016;36(1):63–9. PMID: 26642076. DOI: 10.1097/bpo.0000000000000396.

57. Finkel R.S., Mercuri E., Meyer O.H. et al. SMA Care group. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems and ethics. Neuromuscul Disord 2018;28(3):197–207. PMID: 29305137. DOI: 10.1016/j.nmd.2017.11.004.

58. Cherry J.J., Kobayashi D.T., Lynes M.M. et al. Assays for the identification and prioritization of drug candidates for spinal muscular atrophy. Assay Drug Dev Technol 2014;12:315–41. PMID: 25147906. DOI: 10.1089/adt.2014.587.

59. Pattali R., Mou Y., Li XJ. AAV9 Vector: a Novel modality in gene therapy for spinal muscular atrophy. Gene Therapy 2019; 26:287–95. PMID: 31243392. DOI: 10.1038/s41434-019-0085-4.

60. Finkel R.S., Mercuri E., Darras B.T. et al. ENDEAR Study Group. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med 2017;377(18):1723–32. PMID: 29091570. DOI: 10.1056/nejmoa1702752.

61. Dangouloff T., Servais L. Clinical evidence supporting early treatment of patients with spinal muscular atrophy: current perspectives. Ther Clin Risk Manag 2019;15:1153–61. PMID: 31632042. DOI: 10.2147/TCRM.S172291.

62. De Vivo D.C., Bertini E., Swoboda K.J. et al. NURTURE Study Group. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul Disord 2019;29(11):842–56. PMID: 31704158. DOI: 10.1016/j.nmd.2019.09.007.

63. Glascock J., Sampson J., Haidet-Phillips A. et al. Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening. J Neuromuscul Dis 2018;5(2):145–58. PMID: 29614695. DOI: 10.3233/JND-180304.

64. Aton J., Davis R.H., Jordan K.C. et al. Vitamin D intake is inadequate in spinal muscular atrophy type I cohort: correlations with bone health. J Child Neurol 2014;29(3):374–80. PMID: 23334077. DOI: 10.1177/0883073812471857.

65. Shoval H.A., Antelis E., Hillman A. et al. Onabotulinum toxin A injections into the salivary glands for spinal muscle atrophy type I: a prospective case series of 4 patients. Am J Phys Med Rehabil 2018;97(12):873–8. PMID: 30439739. DOI: 10.1097/phm.0000000000000989.

66. McGeachan A.J., Mcdermott C.J. Management of oral secretions in neurological disease. Pract Neurol 2017;17:96–103. PMID: 28188210. DOI: 10.1136/practneurol-2016-001515.

67. McElroy M.J., Shaner A.C., Crawford T.O. et al. Growing rods for scoliosis in spinal muscular atrophy: structural effects, complications, and hospital stays. Spine 2011;36(16):1305–11. PMID: 21730818. DOI: 10.1097/brs.0b013e3182194937.

68. Fujak A., Raab W., Schuh A. et al. Operative treatment of scoliosis in proximal spinal muscular atrophy: results of 41 patients. Arch Orthop Trauma Surg 2012;132(12):1697–706. PMID: 23053190. DOI: 10.1007/s00402-012-1610-8.

69. Livingston K., Zurakowski D., Snyder B. Growing Spine Study Group, Children’s Spine Study Group. Parasol rib deformity in hypotonic neuromuscular scoliosis: a new radiographical definition and a comparison of short-term treatment outcomes with VEPTR and growing rods. Spine 2015;40(13):E780–6. PMID: 26356068. DOI: 10.1097/BRS.0000000000000911.

70. Barnérias C., Quijano S., Mayer M. et al. Multicentric study of medical care and practices in spinal muscular atrophy type 1 over two 10-year periods. Arch Pediatr 2014;21(4):347–54. PMID: 24630620. DOI: 10.1016/j.arcped.2014.01.017.

71. Durkin E.T., Schroth M.K., Helin M., Shaaban A.F. Early laparoscopic fundoplication and gastrostomy in infants with spinal muscular atrophy type I. J Pediatr Surg 2008;43(11):2031–7. PMID: 18970936. DOI: 10.1016/j.jpedsurg.2008.05.035.

72. Simonds A.K. Home mechanical ventilation: an overview. Ann Am Thorac Soc 2016;13(11):2035–44. PMID: 27560387. DOI: 10.1513/annalsats.201606-454fr.

73. Moore G.E., Lindenmayer A.W., McConchie G.A. et al. Describing nutrition in spinal muscular atrophy: a systematic review. Neuromuscul Disord 2016;26(7):395–404. PMID: 27241822. DOI: 10.1016/j.nmd.2016.05.005.

74. Schofield C. An annotated bibliography of source material for basal metabolic rate data. Hum Nutr Clin Nutr 1985;39(1): 42–91. PMID: 3900006.

75. Stoimenis D., Spyridonidou C., Theofanidou S. et al. Euglycemic ketoacidosis in spinal muscular atrophy. Case Rep Pediatr 2019;27:2862916. PMID: 30809411. DOI: 10.1155/2019/2862916.

76. Davis R.H., Godshall B.J., Seffrood E. et al. Nutritional practices at a glance: spinal muscular atrophy type I nutrition survey findings. J Child Neurol 2014;29(11):1467–72. PMID: 24097849. DOI: 10.1177/0883073813503988.

77. Sepúlveda C., Marlin A., Yoshida T., Ullrich A. Palliative care: the World Health Organization’s global perspective. J Pain Symptom Manage 2002;24:91–6. PMID: 12231124. DOI: 10.1016/s0885-3924(02)00440-2.

78. Pastrana T., Jünger S., Ostgathe C. et al. A matter of definition – key elements identified in a discourse analysis of definitions of palliative care. Palliat Med 2008;22:222–32. PMID: 18477716. DOI: 10.1177/0269216308089803.

79. Wang C.H., Finkel R.S., Bertini E.S. et al. Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol 2007;22(8):1027–49. PMID: 17761659. DOI: 10.1177/0883073807305788.

80. Bach J.R. Medical considerations of longterm survival of Werdnig-Hoffmann disease. Am J Phys Med Rehabil 2007;86:349–55. PMID: 17449979. DOI: 10.1097/PHM.0b013e31804b1d66.

81. Garcia-Salido A., de Paso-Mora M.G., Monleon-Luque M., Martino-Alba R. Palliative care in children with spinal muscular atrophy type I: what do they need? Palliat Support Car 2015;13:313–7. PMID: 24565112. DOI: 10.1017/S1478951514000042.

82. Hull J., Aniapravan R., Chan E. et al. Guidelines for respiratory management of children with neuromuscular weakness British Thoracic Society Respiratory Management of Children with Neuromuscular Weakness Guideline Group. Thorax 2012;67(1):i1–i40. PMID: 22730428. DOI: 10.1136/thoraxjnl-2012-201964.

83. Geevasinga N., Ryan M.M. Physician attitudes towards ventilator support for spinal muscular atrophy type1 in Australasia. J Paediatrics Child Health 2007;43:790–4. PMID: 17803671. DOI: 10.1111/j.1440-1754.2007.01197.x.

84. Hardart M.K., Burns J.P., Truog R.D. Respiratory support in spinal muscular atrophy type 1: a survey of physician practices and attitudes. Pediatrics 2002;110:e24. PMID: 12165623. DOI: 10.1542/peds.110.2.e24.

85. Dybwik K., Tollali T., Nielsen E.W. et al. Why does the provision of home mechanical ventilation vary so widely? Chronic Respir Dis 2010;7:67–73. PMID: 20015913. DOI: 10.1177/1479972309357497.

86. Mah J.K., Thannhauser J.E., Kolski H. et al. Parental stress and quality of life in children with neuromuscular disease. Pediatr Neurol 2008;39:102–7. PMID: 18639753. DOI: 10.1016/j.pediatrneurol.2008.04.011.

87. Engel J.M., Kartin D., Carter G.T. et al. Pain in youths with neuromuscular disease. Am J Hosp Palliat Care 2009;26(5):405–12. PMID: 19820205. DOI: 10.1177/1049909109346165.

88. Dunaway S., Montes J., McDermott M.P. et al. Physical therapy services received by individuals with spinal muscular atrophy (SMA). J Pediatr Rehabil Med 2016;9(1):35–44. PMID: 26966799. DOI: 10.3233/PRM-160360.

89. Cunha M.C., Oliveira A.C., Labronici R.H., Gabbai A.A. Spinal muscular atrophy type II (intermediary) and III (KugelbergWelander). Evolution of 50 patients with physiotherapy and hydrotherapy in a swimming pool. Arq Neuropsiquiatr 1996;54(3):402–6. PMID: 9109983. DOI: 10.1590/s0004-282x1996000300007.

90. Keefe F.J., Surwit R.S. Electromyographic biofeedback: behavioral treatment of neuromuscular disorders. J Behav Med 1978;1(1):13–24. PMID: 556109. DOI: 10.1007/BF00846583.

91. Kelle B., Tas D., Erkan D. Kinesio taping application in a pediatric patient with spinal muscular atrophy. Cukurova Medical Journal 2016;41:386–9. PMID: 556109. DOI: 10.1007/BF00846583.

92. Fujak A., Kopschina C., Forst R. et al. Use of orthoses and orthopaedic technical devices in proximal spinal muscular atrophy. Results of survey in 194 SMA patients. Disabil Rehabil Assist Technol 2011;6(4):305–11. PMID: 20939690. DOI: 10.3109/17483107.2010.525292.

93. Demir Y.P. Neuromuscular diseases and rehabilitation. Neurological Physical Therapy, 2017. P. 176–214

94. Luc M., Bensoussan L., Viton J.M. et al. A patellar tendon-bearing orthosis and orthopaedic shoes. Gait recovery in a distal spinal muscular atrophy patient wearing a patellar tendon-bearing orthosis and orthopedic shoes. Rehabil Med 2007;39(2):181–4. PMID: 17351703. DOI: 10.2340/16501977-0025.

95. Subasi S., Yildiz T.I., Bulut N. et al. G.P.243: Orthosis usage and ambulation levels in different clinical types of SMA. Neuromuscul Disord 2014;24(9–10):889–90.

96. Dunaway S., Montes J., O’Hagen J. et al. Independent mobility after early introduction of a power wheelchair in spinal muscular atrophy. J Child Neurol 2013;28(5):576–82. DOI: 10.1177/0883073812449383.

Для цитирования:

Проксимальная спинальная мышечная атрофия 5q. Нервно-мышечные болезни. 2020;10(4):53-104.

For citation:

Proximal spinal muscular atrophy 5q. Neuromuscular Diseases. 2020;10(4):53-104. (In Russ.)

Просмотров: 187

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 2222-8721 (Print)
ISSN 2413-0443 (Online)