Preview

Neuromuscular Diseases

Advanced search

Molecular-genetic basis of Rubinstein–Taybi syndrome

https://doi.org/10.17650/2222-8721-2023-13-2-31-41

Abstract

Rubinstein–Taybi syndrome is a multisystem pathology characterized by mental retardation and delayed physical development in combination with a set of phenotypic features, which make up a recognizable pattern of the disease. This review of the literature highlights the molecular‑genetic basis and the presumed pathogenesis of the Rubinstein–Taybi syndrome, considers questions of geno‑phenotypic correlations and differential diagnosis in the group of pathologies called chromatinopathies.

About the Authors

O. R. Ismagilova
N. P. Bochkov Medical Genetic Research Center
Russian Federation

Оlga Raisovna Ismagilova

1 Moskvorechye St., Moscow 115522



T. S. Beskorovaynaya
N. P. Bochkov Medical Genetic Research Center
Russian Federation

1 Moskvorechye St., Moscow 115522



T. A. Adyan
N. P. Bochkov Medical Genetic Research Center; N. I. Pirogov Russian National Research Medical University of the Ministry of Health of Russia
Russian Federation

1 Moskvorechye St., Moscow 115522

1 Ostrovityanova St., Moscow 117997



A. V. Polyakov
N. P. Bochkov Medical Genetic Research Center
Russian Federation

1 Moskvorechye St., Moscow 115522



References

1. Roelfsema J.H., Peters D.J.M. Rubinstein–Taybi syndrome: clinical and molecular overview. Expert Rev Mol Med 2007;9(23):1–16. DOI: 10.1017/S1462399407000415

2. Hennekam R.C.M., Stevens C.A., Van de Kamp J.J.P. Etiology and recurrence risk in Rubinstein–Taybi syndrome. Am J Med Gen 1990;37(S6):56–64. DOI: 10.1002/ajmg.1320370610

3. Negri G., Milani D., Colapietro P. et al. Clinical and molecular characterization of Rubinstein–Taybi syndrome patients carrying distinct novel mutations of the EP300 gene. Clin Gen 2015;87(2):148–54. DOI: 10.1111/cge.12348

4. Spena S., Milani D., Rusconi D. et al. Insights into genotype–phenotype correlations from CREBBP point mutation screening in a cohort of 46 Rubinstein–Taybi syndrome patients. Clin Genet 2015;88(5):431–40. DOI: 10.1111/cge.12537

5. Bartsch O., Kress W., Kempf O. et al. Inheritance and variable expression in Rubinstein–Taybi syndrome. Am J Med Genet 2010;152A(9):2254–61. DOI: 10.1002/ajmg.a.33598.

6. Petrij F., Giles R.H., Dauwerse H.G. et al. Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 1995;376(6538):348–51. DOI: 10.1038/376348a0

7. Arany Z.N., Sellers WR., Livingston D. M., Eckner R. E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 1994;77(6):799–800. DOI: 10.1016/0092-8674(94)90127-9

8. Korzus E. Rubinstein–Taybi syndrome and epigenetic alterations. Adv Exp Med Biol 2017;978:39–62. DOI: 10.1007/978-3-319-53889-1_3.

9. Dyson H.J., Wright P.E. Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J Biol Chem 2016;291(13):6714–22. DOI: 10.1074/jbc.R115.692020

10. Park E., Kim Y., Ryu H. et al. Epigenetic mechanisms of Rubinstein–Taybi syndrome. Neuromolecular Med 2014;16(1): 16–24. DOI: 10.1007/s12017-013-8285-3

11. Ramos Y.F., Hestand M.S., Verlaan M. et al. Genome-wide assessment of differential roles for p300 and CBP in transcription regulation. Nucleic Acids Res 2010;38(16):5396–408. DOI: 10.1093/nar/gkq184

12. Kasper L.H., Qu C., Obenauer J.C., McGoldrick D.J., Brindle P.K. Genome-wide and single-cell analyses reveal a context dependent relationship between CBP recruitment and gene expression. Nucleic Acids Res 2014;42(18):11363–82. DOI: 10.1093/nar/gku827

13. Viosca J., Lopez-Atalaya J.P., Olivares R. et al. Syndromic features and mild cognitive impairment in mice with genetic reduction on p300 activity: differential contribution of p300 and CBP to Rubinstein–Taybi syndrome etiology. Neurobiol Dis 2010;37(1):186–94. DOI: 10.1016/j.nbd.2009.10.001

14. McManus K.J., Hendzel M.J. Quantitative analysis of CBP-and P300-induced histone acetylations in vivo using native chromatin. Mol Cell Biol 2003;23(21):7611–27. DOI: 10.1128/MCB.23.21.7611-7627.2003

15. De Guzman R.N., Wojciak J.M., Martinez-Yamout M.A. et al. CBP/p300 TAZ1 domain forms a structured scaffold for ligand binding. Biochemistry 2005;44(2):490–97. DOI: 10.1021/bi048161t

16. De Guzman R.N., Liu H.Y., Martinez-Yamout M. et al. Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP. J Mol Biol 2000;303(2):243–53. DOI: 10.1006/jmbi.2000.4141

17. Zhang Y., Xue Y., Shi J. et al. The ZZ domain of p300 mediates specificity of the adjacent HAT domain for histone H3. Nat Struct Mol Biol 2018;25(9):841–49. DOI: 10.1038/s41594-018-0114-9

18. Manning E.T., Ikehara T., Ito T. et al. p300 forms a stable, template-committed complex with chromatin: role for the bromodomain. Mol Cell Biol 2001;21(12):3876–87. DOI: 10.1128/MCB.21.12.3876-3887.2001

19. Park S., Martinez-Yamout M.A., Dyson H.J., Wright P.E. The CH2 domain of CBP/p300 is a novel zinc finger. FEBS Lett 2013;587(16):2506–11. DOI: 10.1016/j.febslet.2013.06.051

20. Park S., Stanfield R.L., Martinez-Yamout M.A. et al. Role of the CBP catalytic core in intramolecular SUMOylation and control of histone H3 acetylation. Proc Nat Acad Sci 2017;114(27):E5335–E5342. DOI: 10.1073/pnas.1703105114

21. Rack J.G., Lutter T., Bjerga G.E.K. et al. The PHD finger of p300 influences its ability to acetylate histone and non-histone targets. J Mol Biol 2014;426(24):3960–72. DOI: 10.1016/j.jmb.2014.08.011

22. Ma L., Gao Z., Wu J. et al. Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics. Mol Cell 2021;81(8):1682–97.e7. DOI: 10.1016/j.molcel.2021.01.031.

23. Kalkhoven E., Roelfsema J.H., Teunissen H. et al. Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein– Taybi syndrome. Hum Mol Gen 2003;12(4):441–50. DOI: 10.1093/hmg/ddg039

24. Yuan L. W., Gambee J. E. Histone acetylation by p300 is involved in CREB-mediated transcription on chromatin. Bioch Biophys Acta 2001;1541(3):161–69. DOI: 10.1016/S0167-4889(01)00141-0

25. Radhakrishnan I., P rez-Alvarado G.C., Parker D. et al. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator: coactivator interactions. Cell 1997;91(6):741–52. DOI: 10.1016/s0092-8674(00)80463-8

26. Parker D., Jhala U.S., Radhakrishnan I. et al. Analysis of an activator: coactivator complex reveals an essential role for secondary structure in transcriptional activation. Mol Cell 1998;2(3):353–9. DOI: 10.1016/S1097-2765(00)80279-8

27. Bedford D.C., Kasper L.H., Fukuyama T. et al. Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics 2010;5(1):9–15. DOI: 10.4161/epi.5.1.10449

28. Merz K., Herold S., Lie D. C. CREB in adult neurogenesis–master and partner in the development of adult-born neurons? Eur J Neuro Sci 2011;33(6):1078–86. DOI: 10.1111/j.1460-9568.2011.07606.x

29. Ateca-Cabarga J.C., Cosa A., Pallar s V. et al. Brain size regulations by CBP haploinsufficiency evaluated by in-vivo MRI based volumetry. Sci Rep 2015;5:16256. DOI: 10.1038/srep16256

30. Alari V., Russo S., Terragni B. et al. iPSC-derived neurons of CREBBP-and EP300-mutated Rubinstein–Taybi syndrome patients show morphological alterations and hypoexcitability. Stem Cell Res 2018;30:130–40. DOI: 10.1016/j.scr.2018.05.019

31. Pogacar S., Nora N.F., Kemper T.L. Neuropathological findings in the Rubinstein–Taybi syndrome. R I Med J 1973;56(3):114–21.

32. Calzari L., Barcella M., Alari V. et al. Transcriptome analysis of iPSC-derived neurons from Rubinstein–Taybi patients reveals deficits in neuronal differentiation. Mol Neurobiol 2020;57(9):3685–701. DOI: 10.1007/s12035-020-01983-6

33. Lipscombe D., Soto E.J.L. Alternative splicing of neuronal genes: new mechanisms and new therapies. Cur Opin Neurobiol 2019;57:26–31. DOI: 10.1016/j.conb.2018.12.013

34. Larizza L., Calzari L., Alari V., Russo S. Genes for RNA-binding proteins involved in neural-specific functions and diseases are downregulated in Rubinstein–Taybi iNeurons. Neur Regener Res 2022;17(1):5–14. DOI: 10.4103/1673-5374.314286

35. Ajmone P.F., Avignone S., Gervasini C. et al. Rubinstein–Taybi syndrome: New neuroradiological and neuropsychiatric insights from a multidisciplinary approach. Am J Med Genet B Neuropsychiatr Genet 2018;177(4):406–15. DOI: 10.1002/ajmg.b.32628

36. Wang L., Tang Y., Cole P.A., Marmorstein R. Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr Opin Struct Biol 2008;18(6):741–47. DOI: 10.1016/j.sbi.2008.09.004

37. Bose D.A., Donahue G., Reinberg D. et al. RNA binding to CBP stimulates histone acetylation and transcription. Cell 2017; 168(1-2):135–49.e22. DOI: 10.1016/j.cell.2016.12.020

38. Das C., Lucia M.S., Hansen K.C., Tyler J.K. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009;459(7243):113–7. DOI: 10.1038/nature07861

39. Weinert B.T., Narita T., Satpathy S. et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylomeb. Cell 2018;174(1):231–244.e12. DOI: 10.1016/j.cell.2018.04.033

40. Bannister A.J., Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature 1996;384(6610):641–3. DOI: 10.1038/384641a0

41. Kalkhoven E. CBP and p300: HATs for different occasions. Biochem Pharmacol 2004;68(6):1145–55. DOI: 10.1016/j.bcp.2004.03.045

42. Zocchi L., Sassone-Corsi P. Joining the dots: from chromatin remodeling to neuronal plasticity. Curr Opin Neurobiol 2010;20(4):432–40. DOI: 10.1016/j.conb.2010.04.005

43. Borrelli E., Nestler E.J., Allis C.D., Sassone-Corsi P. Decoding the epigenetic language of neuronal plasticity. Neuron 2008;60(6):961–74. DOI: 10.1016/j.neuron.2008.10.012

44. Wang J., Weaver I.C., Gauthier-Fisher A. et al. CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein–Taybi syndrome brain. Dev Cell 2010;18(1):114–25. DOI: 10.1016/j.devcel.2009.10.023

45. Wood M.A., Kaplan M.P., Park A. et al. Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn Mem 2005;12(2):111–9. DOI: 10.1101/lm.86605

46. Korzus E., Rosenfeld M.G., Mayford M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 2004;42(6):961–72. DOI: 10.1016/j.neuron.2004.06.002

47. Oliveira A.M.M., Wood M.A., McDonough C.B., Abel T. Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn Mem 2007;14(9):564–72. DOI: 10.1101/lm.656907

48. Oliveira A.M.M., Estévez M.A., Hawk J.D. et al. Subregionspecific p300 conditional knock-out mice exhibit long-term memory impairments. Learn Mem 2011;18(3):161–9. DOI: 10.1101/lm.1939811

49. Vieira P.A., Korzus E. CBP-dependent memory consolidation in the prefrontal cortex supports object-location learning. Hippocampus 2015;25(12):1532–40. DOI: 10.1002/hipo.22473

50. Haettig J., Stefanko D.P., Multani M.L. et al. HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner. Learn Mem 2011;18(2): 71–9. DOI: 10.1101/lm.1986911

51. Chatterjee S., Angelakos C.C., Bahl E. et al. The CBP KIX domain regulates long-term memory and circadian activity. BMC Biology 2020;18(1):1–23. DOI: 10.1186/s12915-020-00886-1

52. McNulty S.E., Barrett R.M., Vogel-Ciernia A. et al. Differential roles for Nr4a1 and Nr4a2 in object location vs. object recognition long-term memory. Learn Mem 2012;19(12):588–92. DOI: 10.1101/lm.026385.112

53. Lee S., Lee S. K. Crucial roles of histone-modifying enzymes in mediating neural cell-type specification. Curr Opin Neurobiol 2010;20(1):29–36. DOI: 10.1016/j.conb.2010.01.003

54. Hsieh J., Nakashima K., Kuwabara T. et al. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 2004;101(47):16659–64. DOI: 10.1073/pnas.0407643101

55. Yu I.T., Park J.Y., Kim S.H. et al. Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology 2009;56(2):473–80. DOI: 10.1016/j.neuropharm.2008.09.019

56. Barco A. The Rubinstein–Taybi syndrome: modeling mental impairment in the mouse. Genes Brain Behav 2007;6(Suppl 1): 32–9. DOI: 10.1111/j.1601-183X.2007.00320.x

57. Lopez-Atalaya J.P., Ciccarelli A., Viosca J. et al. CBP is required for environmental enrichment‐induced neurogenesis and cognitive enhancement. EMBO J 2011;30(20):4287–98. DOI: 10.1038/emboj.2011.299

58. López-Atalaya J.P., Gervasini C., Mottadelli F. et al. Histone acetylation deficits in lymphoblastoid cell lines from patients with Rubinstein–Taybi syndrome. J Med Genet 2012;49(1):66–74. DOI: 10.1136/jmedgenet-2011-100354

59. Dutto I., Scalera C., Prosperi E. CREBBP and p300 lysine acetyl transferases in the DNA damage response. Cell Mol Life Sci 2018;75(8):1325–38. DOI: 10.1007/s00018-017-2717-4

60. Reed S. M., Quelle D.E. p53 acetylation: regulation and consequences. Cancers (Basel) 2015;7(1):30–69. DOI: 10.3390/cancers7010030

61. Akinsiku O.E., Soremekun O.S., Soliman M.E.S. Update and Potential Opportunities in CBP [Cyclic Adenosine Monophosphate (cAMP) Response Element-Binding Protein (CREB)-Binding Protein] Research Using Computational Techniques. Protein J 2021;40(1):19–27. DOI: 10.1007/s10930-020-09951-8

62. Zhang R., Edwards J.R., Ko S.Y. et al. Transcriptional regulation of BMP2 expression by the PTH-CREB signaling pathway in osteoblasts. PLoS One 2011;6(6):e20780. DOI: 10.1371/J.pone.0020780.

63. Shim J.H., Greenblatt M.B., Singh A. et al. Administration of BMP2/7 in utero partially reverses Rubinstein–Taybi syndrome-like skeletal defects induced by Pdk1 or Cbp mutations in mice. J Clin Invest 2012;122(1):91–106. DOI: 10.1172/JCI59466

64. Moslehi R., Mills J.L., Signore C. et al. Integrative transcriptome analysis reveals dysregulation of canonical cancer molecular pathways in placenta leading to preeclampsia. Sci Rep 2013;3:2407. DOI: 10.1038/srep02407

65. Kumar P., Pandey K. N. Cooperative activation of Npr1 gene transcription and expression by interaction of Ets-1 and p300. Hypertension 2009;54(1):172–8. DOI: 10.1161/HYPERTENSIONAHA.109.133033.

66. Milani D., Pezzani L., Negri G. et al. Potential impact of fetal genotype on maternal blood pressure during pregnancy: the example of EP300. J Hypertens 2015;33(3):664–5. DOI: 10.1097/HJH.0000000000000507

67. Van Uitert M., Moerland P.D., Enquobahrie D.A. et al. Meta-analysis of placental transcriptome data identifies a novel molecular pathway related to preeclampsia. PLoS One 2015;10(7):e0132468. DOI: 10.1371/J.pone.0132468

68. Fergelot P., Van Belzen M., Van Gils J. et al. Phenotype and genotype in 52 patients with Rubinstein–Taybi syndrome caused by EP300 mutations. Am J Med Genet 2016;170(12):3069–82. DOI: 10.1002/ajmg.a.37940

69. Oike Y., Hata A., Mamiya T. et al. Truncated CBP protein leads to classical Rubinstein–Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum Mol Gen 1999;8(3):387–96. DOI: 10.1093/hmg/8.3.387

70. Coupry I., Roudaut C., Stef M. et al. Molecular analysis of the CBP gene in 60 patients with Rubinstein–Taybi syndrome. J Med Gen 2002;39(6):415–21. DOI: 10.1136/jmg.39.6.415

71. QIAGEN Digital Insights. CREBBP. Available at: https://portal.biobase-international.com/hgmd/pro/gene.php?gene=CREBBP.

72. QIAGEN Digital Insights. EP300. Available at: https://portal.biobase-international.com/hgmd/pro/gene.php?gene=EP300.

73. Bartholdi D., Roelfsema J.H., Papadia F. et al. Genetic heterogeneity in Rubinstein–Taybi syndrome: delineation of the phenotype of the first patients carrying mutations in EP300. J Med Gen 2007;44(5):327–33. DOI: 10.1136/jmg.2006.046698

74. Negri G., Magini P., Milani D. et al. From whole gene deletion to point mutations of EP300-positive Rubinstein–Taybi patients: new insights into the mutational spectrum and peculiar clinical hallmarks. Hum Mut 2016;37(2):175–83. DOI: 10.1002/humu.22922

75. Woods S.A., Robinson H.B., Kohler L.J. et al. Exome sequencing identifies a novel EP300 frame shift mutation in a patient with features that overlap Cornelia de Lange syndrome. Am J Med Genet 2014;164A(1):251-258. PMID: 24352918. DOI: 10.1002/ajmg.a.36237.

76. Chiang P. W., Lee N.C., Chien N. et al. Somatic and germ‐line mosaicism in Rubinstein–Taybi syndrome. Am J Med Genet A 2009;149A(7):1463–7. DOI: 10.1002/ajmg.a.32948

77. De Vries T.I., R Monroe G., van Belzen M.J. et al. Mosaic CREBBP mutation causes overlapping clinical features of Rubinstein–Taybi and Filippi syndromes. Eur J Hum Gen 2016;24(9):1363–6. DOI: 10.1038/ejhg.2016.14

78. Bjornsson H.T. The Mendelian disorders of the epigenetic machinery. Gen Res 2015;25(10):1473–81. DOI: 10.1101/gr.190629.115

79. Pérez-Grijalba V., García-Oguiza A., López M. et al. New insights into genetic variant spectrum and genotype–phenotype correlations of Rubinstein–Taybi syndrome in 39 CREBBP-positive patients. Mol Genet Genomic Med 2019;7(11):e972. DOI: 10.1002/mgg3.972

80. Bartsch O., Rasi S., Delicado A. et al. Evidence for a new contiguous gene syndrome, the chromosome 16p13. 3 deletion syndrome alias severe Rubinstein–Taybi syndrome. Hum Genet 2006;120(2):179–86. DOI: 10.1007/s00439-006-0215-0

81. Cohen J.L., Schrier Vergano S.A., Mazzola S. et al. EP300-related Rubinstein–Taybi syndrome: Highlighted rare phenotypic findings and a genotype–phenotype meta-analysis of 74 patients. Am J Med Genet A 2020;182(12):2926–38. DOI: 10.1002/ajmg.a.61883

82. Bartsch O., Labonté J., Albrecht B. et al. Two patients with EP300 mutations and facial dysmorphism different from the classic Rubinstein–Taybi syndrome. Am J Med Genet A 2010;152A(1):181–4. DOI: 10.1002/ajmg.a.33153

83. Solomon B.D., Bodian D.L., Khromykh A. et al. Expanding the phenotypic spectrum in EP300-related Rubinstein–Taybi syndrome. Am J Med Genet A 2015;167A(5):1111–6. DOI: 10.1002/ajmg.a.36883

84. López M., Seidel V., Santibáñez P. et al. First case report of inherited Rubinstein–Taybi syndrome associated with a novel EP300 variant. BMC Med Gen 2016;17(1):1–5. DOI: 10.1186/s12881-016-0361-8

85. Hamilton M.J., Newbury-Ecob R., Holder-Espinasse M. et al. Rubinstein–Taybi syndrome type 2: report of nine new cases that extend the phenotypic and genotypic spectrum. Clin Dysmorphol 2016;25(4):135–45. DOI: 10.1097/MCD.0000000000000143

86. Spena S., Gervasini C., Milani D. Ultra-rare syndromes: the example of Rubinstein–Taybi syndrome. J Pediatr Genet 2015;4(3):177–86. DOI: 10.1055/s-0035-1564571

87. Nowaczyk M.J.M., Nikkel S.M., White S.M. Floating–Harbor syndrome. GeneReviews®. University of Washington, Seattle, 2019.

88. Hood R.L., Schenkel L.C., Nikkel S.M. et al. The defining DNA methylation signature of Floating–Harbor syndrome. Sci Rep 2016;6:38803. DOI: 10.1038/srep38803

89. Deardorff M.A., Noon S.E., Krantz I. D. Cornelia de Lange syndrome. GeneReviews®. University of Washington, Seattle, 2016.

90. Schierding W., Horsfield J., O’Sullivan J.M. Low tolerance for transcriptional variation at cohesin genes is accompanied by functional links to disease-relevant pathways. J Med Genet 2021;58(8):534–42. DOI: 10.1136/jmedgenet-2020-107095

91. Cucco F., Sarogni P., Rossato S. et al. Pathogenic variants in EP300 and ANKRD11 in patients with phenotypes overlapping Cornelia de Lange syndrome. Am J Med Genet A 2020;182(7):1690–6. DOI: 10.1002/ajmg.a.61611

92. Lemire G., Campeau P.M., Lee B.H. KAT6B disorders. GeneReviews®. University of Washington, Seattle, 1993.

93. Allis C. D., Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet 2016;17(8):487–500. DOI: 10.1038/nrg.2016.59

94. Negri G., Magini P., Milani D. et al. Exploring by whole exome sequencing patients with initial diagnosis of Rubinstein–Taybi syndrome: the interconnections of epigenetic machinery disorders. Hum Genet 2019;138(3):257–69. DOI: 10.1007/s00439-019-01985-y

95. Di Fede E., Massa V., Augello B. et al. Expanding the phenotype associated to KMT2A variants: overlapping clinical signs between Wiedemann–Steiner and Rubinstein–Taybi syndromes. Eur J Hum Genet 2021;29(1):88–98. DOI: 10.1038/s41431-020-0679-8

96. Jones W.D., Dafou D., McEntagart M. et al. De novo mutations in MLL cause Wiedemann–Steiner syndrome. Am J Hum Genet 2012;91(2):358–64. DOI: 10.1016/j.ajhg.2012.06.008

97. Ng S.B., Bigham A.W., Buckingham K.J. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010;42(9):790–93. DOI: 10.1038/ng.646

98. Hoischen A., van Bon B.W., Rodriguez-Santiago B. et al. De novo nonsense mutations in ASXL1 cause Bohring–Opitz syndrome. Nat Genet 2011;43(8):729–31. DOI: 10.1038/ng.868

99. Bramswig N.C., Lüdecke H.J., Alanay Y. et al. Exome sequencing unravels unexpected differential diagnoses in individuals with the tentative diagnosis of Coffin–Siris and Nicolaides– Baraitser syndromes. Hum Genet 2015;134(6):553–68. DOI: 10.1007/s00439-015-1535-8

100. Yuan B., Pehlivan D., Karaca E. et al. Global transcriptional disturbances underlie Cornelia de Lange syndrome and related phenotypes. J Clin Invest 2015;125(2):636–51. DOI: 10.1172/JCI77435


Review

For citations:


Ismagilova O.R., Beskorovaynaya T.S., Adyan T.A., Polyakov A.V. Molecular-genetic basis of Rubinstein–Taybi syndrome. Neuromuscular Diseases. 2023;13(2):31-41. (In Russ.) https://doi.org/10.17650/2222-8721-2023-13-2-31-41

Views: 822


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-8721 (Print)
ISSN 2413-0443 (Online)