Phenotypic variability in TRPV4-associated neuropathies and neuronopathies: a case series
https://doi.org/10.17650/2222-8721-2023-13-2-42-55
Abstract
TRPV4‑associated neuromuscular diseases represent a clinical spectrum of neuropathies and motor neuron disorders. To date, 3 phenotypic forms are distinguished. There are Charcot–Marie–Tooth disease type 2C, distal hereditary motor neuropathy type 8 (DHMN8), scapulo‑peroneal spinal muscular atrophy (SPSMA). Here we report 3 families with DNMN8 and one family with SPSMA. In all cases, DNA‑analysis revealed single nucleotide variants in the TRPV4 gene previously reported as pathogenic. In 3 probands, a combination of signs of both motor and motor‑sensory neuropathies led to difficulties in the establishment of the clinical diagnosis. Patients had mild sensory disturbances in the feet, but in all of these cases nerve conduction study revealed normal sensory nerve action potentials. Considering the prevailing signs of motor neuropathy, these patients were diagnosed with DNMN8. Clinical signs of sensory disturbances are regarded as not contradicting the diagnosis, since they can be observed in various forms of distal motor neuropathies. The clinical features of SPSMA in one patient corresponded to those previously described in the literature. The involvement of the shoulder girdle muscles and the peroneal muscles and neurogenic changes in needle electromyography allow suspecting SPSMA clinically. A distinctive features of TRPV4‑associated neuromuscular diseases are the vocal cords paresis, sensorineural hearing loss and respiratory failure, however they are not obligatory according to our clinical reports.
About the Authors
A. F. MurtazinaRussian Federation
Aysylu Fanzirovna Murtazina
1 Moskvorechye St., Moscow 115522
P. N. Tsabay
Russian Federation
1 Moskvorechye St., Moscow 115522
G. E. Rudenskaya
Russian Federation
1 Moskvorechye St., Moscow 115522
L. A. Bessonova
Russian Federation
1 Moskvorechye St., Moscow 115522
F. M. Bostanova
Russian Federation
1 Moskvorechye St., Moscow 115522
D. M. Guseva
Russian Federation
1 Moskvorechye St., Moscow 115522
I. V. Sharkova
Russian Federation
1 Moskvorechye St., Moscow 115522
O. A. Shchagina
Russian Federation
1 Moskvorechye St., Moscow 115522
A. A. Orlova
Russian Federation
1 Moskvorechye St., Moscow 115522
O. P. Ryzhkova
Russian Federation
1 Moskvorechye St., Moscow 115522
T. V. Markova
Russian Federation
1 Moskvorechye St., Moscow 115522
A. S. Kuchina
Russian Federation
1 Moskvorechye St., Moscow 115522
S. S. Nikitin
Russian Federation
1 Moskvorechye St., Moscow 115522
E. L. Dadali
Russian Federation
1 Moskvorechye St., Moscow 115522
References
1. Auer-Grumbach M., Olschewski A., Papic L. et al. Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 2010;42(2): 160–4. DOI: 10.1038/ng.508
2. Zimon M., Baets J., Auer-Grumbach M. et al. Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies. Brain 2010;133(Pt 6):1798–809. DOI: 10.1093/brain/awq109
3. Fiorillo C., Moro F., Brisca G. et al. TRPV4 mutations in children with congenital distal spinal muscular atrophy. Neurogenetics 2012;13(3):195–203. DOI: 10.1007/s10048-012-0328-7
4. Chen D.H., Sul Y., Weiss M. et al. CMT2C with vocal cord paresis associated with short stature and mutations in the TRPV4 gene. Neurology 2010;75(22):1968–75. DOI: 10.1212/WNL.0b013e3181ffe4bb
5. Aharoni S., Harlalka G., Offiah A. et al. Striking phenotypic variability in familial TRPV4-axonal neuropathy spectrum disorder. Am J Med Genet A 2011;155A(12):3153–6. DOI: 10.1002/ajmg.a.34327
6. Berciano J., Baets J., Gallardo E. et al. Reduced penetrance in hereditary motor neuropathy caused by TRPV4 Arg269Cys mutation. J Neurol 2011;258(8):1413–21. DOI: 10.1007/s00415-011-5947-7
7. Koutsis G., Lynch D., Manole A. et al. Charco–Marie–Tooth disease type 2C and scapuloperoneal muscular atrophy overlap syndrome in a patient with the R232C TRPV4 mutation. J Neurol 2015;262(8):1972–5. DOI: 10.1007/s00415-015-7800-x
8. Vill K., Kuhn M., Glaser D. et al. Long-term observations in an affected family with neurogenic scapuloperoneal syndrome caused by mutation R269C in the TRPV4 gene. Neuropediatrics 2015;46(4):282–6. DOI: 10.1055/s-0035-1554100
9. Jedrzejowska M., Debek E., Kowalczyk B. et al. The remarkable phenotypic variability of the p.Arg269HiS variant in the TRPV4 gene. Muscle Nerve 2019;59(1):129–33. DOI: 10.1002/mus.26346
10. Garcia-Elias A., Lorenzo I.M., Vicente R. et al. IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli viaa calmodulin-binding site. J Biol Chem 2008;283(46):31284–8. DOI: 10.1074/jbc.C800184200
11. Kottgen M., Buchholz B., Garcia-Gonzalez M.A. et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 2008;182(3):437–47. DOI: 10.1083/jcb.200805124
12. Donate-Macian P., Jungfleisch J., Perez-Vilaro G. et al. The TRPV4 channel links calcium influx to DDX3X activity and viral infectivity. Nat Commun 2018;9(1):2307. DOI: 10.1038/s41467-018-04776-7
13. Arniges M., Fernandez-Fernandez J.M., Albrecht N. et al. Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 2006;281(3):1580–6. DOI: 10.1074/jbc.M511456200
14. Takahashi N., Hamada-Nakahara S., Itoh Y. et al. TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P(2). Nat Commun 2014;5:4994. DOI: 10.1038/ncomms5994
15. Strotmann R., Schultz G., Plant T.D. Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J Biol Chem 2003;278(29):26541–9. DOI: 10.1074/jbc.M302590200
16. Stenson P.D., Ball E.V., Mort M. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 2003;21(6):577–81. DOI: 10.1002/humu.10212
17. Deng H.X., Klein C.J., Yan J. et al. Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 2010;42(2):165–9. DOI: 10.1038/ng.509
18. Landoure G., Zdebik A.A., Martinez T.L. et al. Mutations in TRPV4 cause Charcot–Marie–Tooth disease type 2C. Nat Genet 2010;42(2):170–4. DOI: 10.1038/ng.512
19. Fecto F., Shi Y., Huda R. et al. Mutant TRPV4-mediated toxicity is linked to increased constitutive function in axonal neuropathies. J Biol Chem 2011;286(19):17281–91. DOI: 10.1074/jbc.M111.237685
20. Klein C.J., Shi Y., Fecto F. et al. TRPV4 mutations and cytotoxic hypercalcemia in axonal Charcot–Marie–Tooth neuropathies. Neurology 2011;76(10):887–94. DOI: 10.1212/WNL.0b013e31820f2de3
21. Sullivan J.M., Zimanyi C.M., Aisenberg W. et al. Novel mutations highlight the key role of the ankyrin repeat domain in TRPV4-mediated neuropathy. Neurol Genet 2015;1(4):e29. DOI: 10.1212/NXG.0000000000000029
22. Taga A., Peyton M.A., Goretzki B. et al. TRPV4 mutations causing mixed neuropathy and skeletal phenotypes result in severe gain of function. Ann Clin Transl Neurol 2022;9(3):375–91. DOI: 10.1002/acn3.51523
23. Cho T.J., Matsumoto K., Fano V. et al. TRPV4-pathy manifesting both skeletal dysplasia and peripheral neuropathy: a report of three patients. Am J Med Genet A 2012;158A(4):795–802. DOI: 10.1002/ajmg.a.35268
24. Fawcett K.A., Murphy S.M., Polke J.M. et al. Comprehensive analysis of the TRPV4 gene in a large series of inherited neuropathies and controls. J Neurol Neurosurg Psychiatry 2012;83(12):1204–9. DOI: 10.1136/jnnp-2012-303055
25. Drew A.P., Zhu D., Kidambi A. et al. Improved inherited peripheral neuropathy genetic diagnosis by whole-exome sequencing. Mol Genet Genomic Med 2015;3(2):143–54. DOI: 10.1002/mgg3.126
26. Uchoa Cavalcanti E.B., Santos S.C.L., Martins C.E.S. et al. Char-cot-Marie-Tooth disease: Genetic profile of patients from a large Brazilian neuromuscular reference center. J Peripher Nerv Syst 2021;26(3):290–7. DOI: 10.1111/jns.12458
27. Volodarsky M., Kerkhof J., Stuart A. et al. Comprehensive genetic sequence and copy number analysis for Charcot–Marie–Tooth disease in a Canadian cohort of 2517 patients. J Med Genet 2021;58(4):284–8. DOI: 10.1136/jmedgenet-2019-106641
28. Dai J., Kim O.H., Cho T.J. et al. Novel and recurrent TRPV4 mutations and their association with distinct phenotypes within the TRPV4 dysplasia family. J Med Genet 2010;47(10):704–9. DOI: 10.1136/jmg.2009.075358
29. Markova T.V., Kenis V.M., Melchenko E.V. et al. Clinical and genetic characteristics of TRPV4-associated skeletal dysplasias in Russian patients. Meditsinskaya genetika = Medical Genetics 2022;21(4):25–37. (In Russ.). DOI: 10.25557/2073-7998.2022.04.25-37
30. Inada H., Procko E., Sotomayor M. et al. Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry 2012;51(31):6195–206. DOI: 10.1021/bi300279b
31. McCray B.A., Diehl E., Sullivan J.M. et al. Neuropathy-causing TRPV4 mutations disrupt TRPV4-RhoA interactions and impair neurite extension. Nat Commun 2021;12(1):1444. DOI: 10.1038/s41467-021-21699-y
32. Dyck P.J., Litchy W.J., Minnerath S. et al. Hereditary motor and sensory neuropathy with diaphragm and vocal cord paresis. Ann Neurol 1994;35(5):608–15. DOI: 10.1002/ana.410350515
33. Deng S., Feely S.M.E., Shi Y. et al. Incidence and clinical features of TRPV4-linked axonal neuropathies in a USA cohort of Char-cot–Marie–Tooth disease type 2. Neuromolecular Med 2020;22(1):68–72. DOI: 10.1007/s12017-019-08564-4
34. Fleury P., Hageman G. A dominantly inherited lower motor neuron disorder presenting at birth with associated arthrogryposis. J Neurol Neurosurg Psychiatry 1985;48(10):1037–48. DOI: 10.1136/jnnp.48.10.1037
35. Van der Vleuten A.J., van Ravenswaaij-Arts C.M., Frijns C.J. et al. Localisation of the gene for a dominant congenital spinal muscular atrophy predominantly affecting the lower limbs to chromosome 12q23–q24. Eur J Hum Genet 1998;6(4):376–82. DOI: 10.1038/sj.ejhg.5200229
36. Echaniz-Laguna A., Dubourg O., Carlier P. et al. Phenotypic spectrum and incidence of TRPV4 mutations in patients with inherited axonal neuropathy. Neurology 2014;82(21):1919–26. DOI: 10.1212/WNL.0000000000000450
37. Rossor A.M., Kalmar B., Greensmith L. et al. The distal hereditary motor neuropathies. J Neurol Neurosurg Psychiatry 2012;83(1): 6–14. DOI: 10.1136/jnnp-2011-300952
38. DeLong R., Siddique T. A large New England kindred with autosomal dominant neurogenic scapuloperoneal amyotrophy with unique features. Arch Neurol 1992;49(9):905–8. DOI: 10.1001/archneur.1992.00530330027010
39. McEntagart M. TRPV4 axonal neuropathy spectrum disorder. J Clin Neurosci 2012;19(7):927–33. DOI: 10.1016/j.jocn.2011.12.003
40. Biasini F., Portaro S., Mazzeo A. et al. TRPV4 related scapuloperoneal spinal muscular atrophy: Report of an Italian family and review of the literature. Neuromuscul Disord 2016;26(4–5):312–5. DOI: 10.1016/j.nmd.2016.02.010
41. Landoure G., Sullivan J.M., Johnson J.O. et al. Exome sequencing identifies a novel TRPV4 mutation in a CMT2C family. Neurology 2012;79(2):192–4. DOI: 10.1212/WNL.0b013e31825f04b2
42. Unger S., Lausch E., Stanzial F. et al. Fetal akinesia in metatropic dysplasia: The combined phenotype of chondrodysplasia and neuropathy? Am J Med Genet A 2011;155A(11):2860–4. DOI: 10.1002/ajmg.a.34268
43. Faye E., Modaff P., Pauli R. et al. Combined phenotypes of spondylometaphyseal dysplasia–Kozlowski type and Charcot–Marie– Tooth disease type 2C secondary to a TRPV4 pathogenic variant. Mol Syndromol 2019;10(3):154–60. DOI: 10.1159/000495778
44. Murtazina A.F., Shchagina O.A., Nikitin S.S. et al. Current view on phenotypic and genetic features of autosomal recessive inherited peripheral neuropathies. Annaly klinicheskoy i eksperimentalnoy nevrologii = Annals of Clinical and Experimental Neurology 2019;13(1):55–69. (In Russ.). DOI: 10.25692/ACEN.2019.1.7
Review
For citations:
Murtazina A.F., Tsabay P.N., Rudenskaya G.E., Bessonova L.A., Bostanova F.M., Guseva D.M., Sharkova I.V., Shchagina O.A., Orlova A.A., Ryzhkova O.P., Markova T.V., Kuchina A.S., Nikitin S.S., Dadali E.L. Phenotypic variability in TRPV4-associated neuropathies and neuronopathies: a case series. Neuromuscular Diseases. 2023;13(2):42-55. (In Russ.) https://doi.org/10.17650/2222-8721-2023-13-2-42-55