Preview

Neuromuscular Diseases

Advanced search

Stages of research and development of therapeutic approaches for Duchenne myodystrophy. Part II: etiotropic approaches

https://doi.org/10.17650/2222-8721-2024-14-2-44-52

Abstract

Duchenne muscular dystrophy is one of the most common inherited muscular dystrophies. The cause of this disease with an X‑linked recessive type of inheritance is mutations in the DMD gene, leading to the absence of the dystrophin protein this gene encodes or its impaired function. Loss of dystrophin leads to severe degenerative processes in patients, especially in muscle tissue, with impaired muscle function, loss of ability to move independently, respiratory failure, cardiomyopathies, etc.

The collective efforts of many researchers over the years since the 19th century, when the diseases was described, not allowed to achieve a cure or significantly influencing the trajectory of the illness. The only notable impact on the disease course has come with the integration of corticosteroid medications into Duchenne muscular dystrophy therapy. While their application can decelerate disease progression and extend the average life expectancy up to 30–40 years, it comes with substantial adversely affects influencing patients’ quality of life.

Certain hopes were associated in recent decades with the development of etiotropic therapy for Duchenne muscular dystrophy, aimed at restoration of the dystrophin’s function. Some of such approaches were based on the overcoming of the effect of premature stop codons in the DMD gene using aminoglycoside antibiotics, ataluren, etc. Several subsequent studies were conducted to explore the applicability of exon‑skipping approaches in the dystrophin gene, aimed at excluding exons carrying pathogenic genetic variants. The rationale for these studies was the available information about a milder course of the disease associated with a truncated but functional dystrophin. The possibility of the pathology correction by means of introduction of the exogenous functional DMD gene copy from the outside (gene replacement therapy) has been under study since the beginning of the 20th century. One of the most promising directions in recent years was the development of approaches related to genome editing, which, unlike the methods mentioned above, allows for the permanent correction of the underlying cause of genetic diseases. Some of corresponding drugs have already received approval, while others, related to gene therapy, are at the stage of clinical trials.

About the Authors

K. S. Kochergin-Nikitskiy
Research Centre for Medical Genetics
Russian Federation

Konstantin Sergeevich Kochergin‑Nikitskiy 

1 Moskvorechye St., Moscow 115522



S. A. Smirnikhina
Research Centre for Medical Genetics
Russian Federation

1 Moskvorechye St., Moscow 115522



A. V. Lavrov
Research Centre for Medical Genetics
Russian Federation

1 Moskvorechye St., Moscow 115522



References

1. Bladen C.L., Salgado D., Mongeset S. et al. The TREAT-NMD DMD Global Database: Analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 2015;36(4):395–402. DOI: 10.1002/humu.22758

2. Blake D.J., Weir A., Newey S.E., Davies K.E. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002;82(2):291–329. DOI: 10.1002/humu.22758

3. Van der Pijl E.M., van Putten M., Niks E.H. et al. Characterization of neuromuscular synapse function abnormalities in multiple Duchenne muscular dystrophy mouse models. Eur J Neurosci 2016;43(12):1623–35. DOI: 10.1111/ejn.13249

4. Tuffery-Giraud S., Béroud C., Leturcq F. et al. Genotype–phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD–DMD database: A model of nationwide knowledgebase. Hum Mutat 2009;30(6):934–45. DOI: 10.1002/humu.20976

5. Oshima J., Magner D.B., Lee J.A. et al. Regional genomic instability predisposes to complex dystrophin gene rearrangements. Hum Genet 2009;126(3):411–23. DOI: 10.1007/s00439-009-0679-9

6. Pegoraro E., Hoffman E.P., Pivaet L. et al. SPP1 genotype is a determinant of disease severity in Duchenne muscular dystrophy. Neurology 2011;76(3):219–26. DOI: 10.1212/WNL.0b013e318207afeb

7. Nowak K.J., Davies K.E. Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 2004;5(9):872–6. DOI: 10.1038/sj.embor.7400221

8. Crisafulli S., Sultana J., Fontana A. et al. Global epidemiology of Duchenne muscular dystrophy: An updated systematic review and meta-analysis. Orphanet J Rare Dis 2020;15(1):141. DOI: 10.1186/s13023-020-01430-8

9. Mercuri E., Bönnemann C.G., Muntoni F. Muscular dystrophies. Lancet 2019;394(10213):2025–38. DOI: 10.1016/S0140-6736(19)32910-1

10. Landfeldt E., Thompson R., Sejersen T. et al. Life expectancy at birth in Duchenne muscular dystrophy: A systematic review and meta-analysis. Eur J Epidemiol 2020;35(7):643–53. DOI: 10.1007/s10654-020-00613-8

11. Nigro G., Comi L.I., Limongelli F.M. et al. Prospective study of X-linked progressive muscular dystrophy in campania. Muscle Nerve 1983;6(4):253–62. DOI: 10.1002/mus.880060403

12. Burke J.F., Mogg A.E. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res 1985;13(17):6265–72. DOI: 10.1093/nar/13.17.6265

13. Martin R., Mogg A.E., Heywood L.A. et al. Aminoglycoside suppression at UAG, UAA and UGA codons in Escherichia coli and human tissue culture cells. Mol Gen Genet 989;217(2–3):411–8. DOI: 10.1007/BF02464911

14. Uis S. Gonzalez I., Spencer J.P. Aminoglycosides: A practical review. Am Fam Physician 1998;58(8):1811–20.

15. Rosenberg C.R., Fang X., Allison K.R. Potentiating aminoglycoside antibiotics to reduce their toxic side effects. PLoS One 2020;15(9):e0237948. DOI: 10.1371/journal.pone.0237948

16. Kimura S., Ito K., Miyagi T. et al. A novel approach to identify Duchenne muscular dystrophy patients for aminoglycoside antibiotics therapy. Brain Dev 2005;27(6):400–5. DOI: 10.1016/j.braindev.2004.09.014

17. Politano L., Nigro G., Nigro V. et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol 2003;22(1):15–21.

18. Wagner K.R., Hamed S., Hadley D.W. et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol 2001;49(6):706–11. DOI: 10.1002/ana.1023

19. Barton-Davis E.R., Cordier L., Shoturma D.I. et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999;104(4):375–81. DOI: 10.1172/JCI7866

20. Malik V., Rodino-Klapac L.R., Viollet L. et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. Ann Neurol 2010;67(6):771–80. DOI: 10.1002/ana.22024

21. Welch E.M., Barton E.R., Zhuo J. et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007;447(7140):87–91. DOI: 10.1038/nature05756

22. Du M., Liu X., Welch E.M. et al. PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc Natl Acad Sci USA 2008;105(6):2064–9. DOI: 10.1073/pnas.0711795105

23. Finkel R.S., Flanigan K.M., Wong B. et al. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PloS One 2013;8(12):e81302. DOI: 10.1371/journal.pone.0081302

24. Bushby K., Finkel R., Wong B. et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 2014;50(4): 477–87. DOI: 10.1002/mus.24332

25. De Cacau L.A.P., de Santana-Filho V.J., Maynard L.G. et al. Reference values for the six-minute walk test in healthy children and adolescents: A systematic review. Braz J Cardiovasc Surg 2016;31(5):381–8. DOI: 10.5935/1678-9741.20160081

26. Kasović M., Štefan L., Petrić V. Normative data for the 6-min walk test in 11–14 year-olds: A population-based study: 1. BMC Pulm Med 2021;21(1):1–6. DOI: 10.1186/s12890-021-01666-5

27. Henricson E., Abresch R., Han J.J. et al. The 6-minute walk test and person-reported outcomes in boys with Duchenne muscular dystrophy and typically developing controls: Longitudinal comparisons and clinically-meaningful changes over one year. PLoS Curr 2013;5:ecurrents.md.9e17658b007eb79fcd6f723089f79e06. DOI: 10.1371/currents.md.9e17658b007eb79fcd6f723089f79e06

28. McDonald C.M., Campbell C., Torricelli R.E. et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): A multicentre, randomised, double-blind, placebocontrolled, phase 3 trial. Lancet Lond Engl 2017;390(10101):1489–98. DOI: 10.1016/S0140-6736(17)31611-2

29. Morkous S.S. Treatment with ataluren for Duchene muscular dystrophy. Pediatr Neurol Briefs 2020;34:12. DOI: 10.15844/pedneurbriefs-34-12

30. Mercuri E., Muntoni F., Osorio A.N. et al. Safety and effectiveness of ataluren: Comparison of results from the STRIDE Registry and CINRG DMD Natural History Study. J Comp Eff Res 2020;9(5):341–60. DOI: 10.2217/cer-2019-0171

31. Michael E., Sofou K., Wahlgren L. et al. Long term treatment with ataluren – the Swedish experience. BMC Musculoskelet Disord.2021;22(1):837. DOI: 10.1186/s12891-021-04700-z

32. Ryan N.J. Ataluren: First global approval. Drugs 2014;74(14): 1709–14. DOI: 10.1007/s40265-014-0287-4

33. FDA Advisory Committee: More Study Needed Before It Can Recommend Approval of Translarna. Available at: https://www.pharmacypracticenews.com/Online-First/Article/09-17/FDA-Advisory-Committee-More-Study-Needed-Before-It-CanRecommend-Approval-of-Translarna/44750?ses=ogst.

34. Arakawa M., Shiozuka M., Nakayama Y. et al. Negamycin restores dystrophin expression in skeletal and cardiac muscles of mdx mice. J Biochem (Tokyo) 2003;134(5):751–8. DOI: 10.1093/jb/mvg203

35. Taguchi A., Nishiguchi S., Shiozuka M. et al. Negamycin analogue with readthrough-promoting activity as a potential drug candidate for Duchenne muscular dystrophy. ACS Med Chem Lett. 2012;3(2): 118–22. DOI: 10.1021/ml200245t

36. Kayali R., Ku J.-M., Khitrov G. et al. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy. Hum Mol Genet 2012;21(18):4007–20. DOI: 10.1093/hmg/dds223

37. Monaco A.P., Bertelson C.J., Liechti-Gallati S. et al. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988;2(1):90–5. DOI: 10.1016/0888-7543(88)90113-9

38. Heald A., Anderson L.V., Bushby K.M. et al. Becker muscular dystrophy with onset after 60 years. Neurology 1994;44(12):2388–90. DOI: 10.1212/wnl.44.12.2388

39. Shiga N., Takeshima Y., Sakamoto H. et al. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy. J Clin Invest 1997;100(9):2204–10. DOI: 10.1172/JCI119757

40. Wang R.T., Barthelemy F., Martin A.S. et al. DMD genotype correlations from the Duchenne Registry: Endogenous exon skipping is a factor in prolonged ambulation for individuals with a defined mutation subtype. Hum Mutat 2018;39(9):1193–202. DOI: 10.1002/humu.23561

41. Echevarría L., Aupy P., Goyenvalle A. Exon-skipping advances for Duchenne muscular dystrophy. Hum Mol Genet 2018;27(R2): R163–72. DOI: 10.1093/hmg/ddy171

42. Yokota T., Duddy W., Echigoya Y. et al. Exon skipping for nonsense mutations in Duchenne muscular dystrophy: Too many mutations, too few patients? Expert Opin Biol Ther 2012;12(9):1141–52. DOI: 10.1517/14712598.2012.693469

43. Nakamura A., Shiba N., Miyazaki D. et al. Comparison of the phenotypes of patients harboring in-frame deletions starting at exon 45 in the Duchenne muscular dystrophy gene indicates potential for the development of exon skipping therapy. J Hum Genet 2017; 62(4):459–63. DOI: 10.1038/jhg.2016.152

44. Echigoya Y., Lim K.R.Q., Nakamura A. et al. Multiple exon skipping in the Duchenne muscular dystrophy hot spots: Prospects and challenges. J Pers Med 2018;8(4):41. DOI: 10.3390/jpm8040041

45. Sheikh O., Yokota T. Advances in genetic characterization and genotype–phenotype correlation of Duchenne and Becker muscular dystrophy in the personalized medicine era. J Pers Med 2020;10(3):111. DOI: 10.3390/jpm10030111

46. Takeshima Y., Nishio H., Sakamoto H. et al. Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe. J Clin Invest 1995;95(2):515–20. DOI: 10.1172/JCI117693

47. Pramono Z.A., Takeshima Y., Alimsardjono H. et al. Induction of exon skipping of the dystrophin transcript in lymphoblastoid cells by transfecting an antisense oligodeoxynucleotide complementary to an exon recognition sequence. Biochem Biophys Res Commun 1996;226(2):445–9. DOI: 10.1006/bbrc.1996.1375

48. Charleston J.S., Schnell F.J., Dworzak J. et al. Eteplirsen treatment for Duchenne muscular dystrophy: Exon skipping and dystrophin production. Neurology 2018;90(24):e2146–54. DOI: 10.1212/WNL.0000000000005680

49. Mendell J.R., Rodino-Klapac L.R., Sahenk Z. et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 2013;74(5):637–47. DOI: 10.1002/ana.23982

50. Mendell J.R., Goemans N., Lowes L.P. et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 2016;79(2):257–71. DOI: 10.1002/ana.24555

51. McDonald C.M., Wong B., Flanigan K.M. et al. Placebo-controlled phase 2 trial of drisapersen for Duchenne muscular dystrophy. Ann Clin Transl Neurol 2018;5(8):913–26. DOI: 10.1002/acn3.579

52. Goemans N., Mercuri E., Belousova E. et al. A randomized placebocontrolled phase 3 trial of an antisense oligonucleotide, drisapersen, in Duchenne muscular dystrophy. Neuromuscul Disord Elsevier 2018;28(1):4–15. DOI: 10.1016/j.nmd.2017.10.004

53. Heo Y.-A. Golodirsen: First approval. Drugs 2020;80(3):329–33. DOI: 10.1007/s40265-020-01267-2

54. Dhillon S. Viltolarsen: First approval. Drugs 2020;80(10):1027–31. DOI: 10.1007/s40265-020-01339-3

55. Komaki H., Takeshima Y., Matsumura T. et al. Viltolarsen in Japanese Duchenne muscular dystrophy patients: A phase 1/2 study. Ann Clin Transl Neurol 2020;7(12):2393–408. DOI: 10.1002/acn3.51235

56. Shirley M. Casimersen: First approval. Drugs 2021;81(7):875–9. DOI: 10.1007/s40265-021-01512-2

57. Lee T., Awano H., Yagi M. et al. 2’-O-methyl RNA/ethylenebridged nucleic acid chimera antisense oligonucleotides to induce dystrophin exon 45 skipping. Genes 2017;8(2):67. DOI: 10.3390/genes8020067

58. Moulton H.M., Moulton J.D. Morpholinos and their peptide conjugates: Therapeutic promise and challenge for Duchenne muscular dystrophy. Biochem Biophys Acta 2010;1798(12):2296–303. DOI: 10.1016/j.bbamem.2010.02.012

59. Goyenvalle A., Griffith G., Babbs A. et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med 2015;21(3):270–5. DOI: 10.1038/nm.3765

60. Friedmann T., Roblin R. Gene therapy for human genetic disease? Science 1972;175(4025):949–55. DOI: 10.1126/science.175.4025.949

61. Wang B., Li J., Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA 2000;97(25):13714–9. DOI: 10.1073/pnas.240335297

62. Harper S.Q., Hauser M.A., DelloRusso C. et al. Modular flexibility of dystrophin: Implications for gene therapy of Duchenne muscular dystrophy. Nat Med 2002;8(3):253–61. DOI: 10.1038/nm0302-253

63. Fabb S.A., Wells D.J., Serpente P. et al. Adeno-associated virus vector gene transfer and sarcolemmal expression of a 144 kDa micro-dystrophin effectively restores the dystrophin-associated protein complex and inhibits myofibre degeneration in nude/ mdx mice. Hum Mol Genet 2002;11(7):733–41. DOI: 10.1093/hmg/11.7.733

64. FDA Approves First Gene Therapy for Treatment of Certain Patients with Duchenne Muscular Dystrophy. FDA, 2023. Available at: https://www.fda.gov/news-events/press-announcements/fdaapproves-first-gene-therapy-treatment-certain-patients-duchennemuscular-dystrophy.

65. Mendell J.R., Sahenk Z., Lehman K. et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with Duchenne muscular dystrophy: A nonrandomized controlled trial. JAMA Neurol 2020;77(9):1122–31. DOI: 10.1001/jamaneurol.2020.1484

66. Lavrov A.V., Zaklyazminskaya E.V. Gene therapy for cardiomyopathies: Opportunities and immediate prospects. Klinicheskaya i eksperimentalnaya khirurgiya. Zhurnal im. akad. B.V. Petrovskogo = Clinical and Experimental Surgery. Journal named after acad. B.V. Petrovsky 2023;11(1):32–46. (In Russ.). DOI: 10.33029/2308-1198-2023-11-1-32-46

67. Elangkovan N., Dickson G. Gene therapy for Duchenne muscular dystrophy. J Neuromuscul Dis;8(Suppl 2):S303–16. DOI: 10.3233/JND-210678

68. Wilton-Clark H., Yokota T. Antisense and gene therapy options for Duchenne muscular dystrophy arising from mutations in the N-terminal hotspot. Genes 2022;13(2):257. DOI: 10.3390/genes13020257

69. Zaynitdinova M.I., Smirnikhina S.A., Lavrov A.V. et al. Gene therapeutic approaches to the treatment of Duchenne muscular dystrophy. Geny i kletki = Genes and Cells 2019;14(4):6–18. (In Russ.). DOI: 10.23868/201912026

70. Kupatt C., Windisch A., Moretti A. et al. Genome editing for Duchenne muscular dystrophy: A glimpse of the future? Gene Ther 2021;28(9):542–8. DOI: 10.1038/s41434-021-00222-4

71. Erkut E., Yokota T. CRISPR therapeutics for Duchenne muscular dystrophy. Int J Mol Sci 2022;23(3):1832. DOI: 10.3390/ijms23031832


Review

For citations:


Kochergin-Nikitskiy K.S., Smirnikhina S.A., Lavrov A.V. Stages of research and development of therapeutic approaches for Duchenne myodystrophy. Part II: etiotropic approaches. Neuromuscular Diseases. 2024;14(2):44-52. (In Russ.) https://doi.org/10.17650/2222-8721-2024-14-2-44-52

Views: 441


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-8721 (Print)
ISSN 2413-0443 (Online)