Preview

Neuromuscular Diseases

Advanced search

Molecular mechanism of neurodegeneration in spinal muscular atrophy

https://doi.org/10.17650/2222-8721-2024-14-3-72-80

Abstract

In the last decade, pathogenetic methods for the treatment of spinal muscular atrophy 5q have been developed. These include increased expression of the SMN2 gene, correction of SMN2 splicing, or reexpression of the SMN1 gene. Despite the comprehension of the genetic causes of the disease and the existence of therapies, it is still not completely known which molecular mechanisms in SMN protein deficiency lead to the degeneration of motor neurons. Understanding the molecular pathways involved in the loss of motor neurons may help develop new therapeutic strategies. The article presents genetic and biochemical data that reveal the molecular mechanisms of neurodegeneration in spinal muscular atrophy 5q.

About the Authors

A. I. Vlasenko
V.A. Almazov National Medical Research Center, Ministry of Health of Russia
Russian Federation

2 Akkuratova St., Saint Petersburg 197341



V. D. Nazarov
I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

Vladimir Dmitrievich Nazarov

6–8 Lva Tolstogo St., Saint Petersburg 197022



S. V. Lapin
I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

6–8 Lva Tolstogo St., Saint Petersburg 197022



A. V. Mazing
I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

6–8 Lva Tolstogo St., Saint Petersburg 197022



E. A. Surkova
I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

6–8 Lva Tolstogo St., Saint Petersburg 197022



T. V. Blinova
I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia
Russian Federation

6–8 Lva Tolstogo St., Saint Petersburg 197022



M. P. Topuzova
V.A. Almazov National Medical Research Center, Ministry of Health of Russia
Russian Federation

2 Akkuratova St., Saint Petersburg 197341



T. M. Alekseeva
V.A. Almazov National Medical Research Center, Ministry of Health of Russia
Russian Federation

2 Akkuratova St., Saint Petersburg 197341



References

1. Mercuri E., Sumner C., Muntoni F. et al. Spinal muscular atrophy. Nat Rev Dis Primers 2022;8(1):52. DOI: 10.1038/s41572-022-00380-8

2. López-Cortés A., Echeverría-Garcés G., Ramos-Medina M. Molecular pathogenesis and new therapeutic dimensions for spinal muscular atrophy. Biology 2022;11(6):894. DOI: 10.3390/biology11060894

3. Lefebvre S., Bürglen L., Reboullet S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995;80(1):155–65. DOI: 10.1016/0092-8674(95)90460-3

4. Farrar M., Kiernan M. The genetics of spinal muscular atrophy: progress and challenges. Neurotherapeutics 2015;12(2):290–302. DOI: 10.1007/s13311-014-0314-x

5. Fallini C., Bassel, G., Rossoll W. Spinal muscular atrophy: The role of SMN in axonal mRNA regulation. Brain Res 2012;1462:81–92.

6. Hosseinibarkooie S., Schneider S., Wirth B. Advances in understanding the role of disease-associated proteins in spinal muscular atrophy. Expert Rev Proteomics 2017;14(7):581–92. DOI: 10.1080/14789450.2017.1345631

7. Lefebvre S., Sarret C. Pathogenesis and therapeutic targets in spinal muscular atrophy (SMA). Arch Pédiatrie 2020; 27(7):7S3–8. DOI: 10.1016/S0929-693X(20)30269-4

8. Chaytow H., Huang Y., Gillingwater T., Faller K. The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Mol Life Sci 2018;75:3877–94.

9. Singh R., Howell M., Ottesen E., Singh N. Diverse role of survival motor neuron protein. Biochim Biophys Acta Gene Regul Mech 2017;1860(3):299–315. DOI: 10.1016/j.bbagrm.2016.12.008

10. Coady T., Lorson C. SMN in spinal muscular atrophy and snRNP biogenesis. Wiley Interdiscip Rev RNA 2011;2(4):546–64. DOI: 10.1002/wrna.76

11. Doktor T., Hua Y., Andersen H. et al. RNA-sequencing of a mousemodel of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns. Nucleic Acids Res 2017;45(1): 395–416. DOI: 10.1093/nar/gkw731

12. Lotti F., Imlach W., Saieva L. et al. An SMN-dependent U12 splicing event essential for motor circuit function. Cell 2012;151(2):440–54. DOI: 10.1016/j.cell.2012.09.012

13. Van Alstyne M., Lotti F., Dal Mas A. et al. Stasimon/Tmem41b localizes to mitochondria-associated ER membranes and is essential for mouse embryonic development. Biochem Biophys Res Commun 2018;506(3):463–70. DOI: 10.1016/j.bbrc.2018.10.073

14. Simon C., Van Alstyne M., Lotti F. et al. Stasimon contributes to the loss of sensory synapses and motor neuron death in a mouse model of spinal muscular atrophy. Cell 2019;29(12):3885–901. DOI: 10.1016/j.celrep.2019.11.058

15. Nazipova N.N. Diversity of non-coding RNAs in eukaryotic genomes. Matematicheskaya biologiya i bioinformatika = Mathematical Biology and Bioinformatics 2021;16(2):256–98. (In Russ.). DOI: 10.17537/2021.16.256

16. Pellizzoni L., Baccon J., Charroux B., Dreyfuss G. The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Curr Biol 2001;11(14):1079–88. DOI: 10.1016/S0960-9822(01)00316-5

17. Piazzon N., Schlotter F., Lefebvre S. et al. Implication of the SMN complex in the biogenesis and steady state level of the signal recognition particle. Nucleic Acids Res 2013;41(2):1255–72. DOI: 10.1093/nar/gks1224

18. Morris G. The Cajal body. Biochim Biophys Acta Mol Cell Res 2008;1783(11):2108–15. DOI: 10.1016/j.bbamcr.2008.07.016

19. Khodyuchenko T.A., Krasikova A.V. Cajal bodies and histone locus bodies: molecular composition and functions. Ontogenez = Ontogenesis 2014;45(6):363–79. (In Russ.). DOI: 10.7868/S0475145014060068

20. Hebert M., Szymczyk P., Shpargel K., Matera A. Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Develop 2001;15(20):2720–9. DOI: 10.1101/gad.908401

21. Tapia O., Bengoechea R., Palanca A. et al. Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy. Histochem Cell Biol 2012;137:657–67. DOI: 10.1007/s00418-012-0921-8

22. Rossoll W., Jablonka S., Andreassi C. et al. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons. Cell Biol 2003;163(4):801–12. DOI: 10.1083/jcb.200304128

23. Duy P.Q., An M., Talbot J. et al. HuD and the survival motor neuron protein interact in motoneurons and are essential for motoneuron development, function, and mRNA regulation. Neuroscience 2017;37(48):11559–71. DOI: 10.1523/JNEUROSCI.1528-17.2017

24. Pereverzeva D.S., Tyushkevich S.A., Gorbachevskaya N.L. et al. Heterogeneity of the clinical picture in syndromes associated with dynamic mutations of the FMR1 gene. Zhurnal nevrologii i psikhiatrii = Journal of Neurology and Psychiatry 2019;119(7):70–8. (In Russ.). DOI: 10.17116/jnevro2019119071103

25. Binda O., Juillard F., Ducassou J.N. et al. SMA-linked SMN mutants prevent phase separation properties and SMN interactions with FMRP family members. Life Sci Alliance 2022;6(1):e202201429. DOI: 10.26508/lsa.202201429

26. Gabanella F., Barbato C., Fiore M. et al. Fine-tuning of mTOR mRNA and nucleolin complexes by SMN. Cells 2021;10(11):3015. DOI: 10.1093/hmg/11.9.1017

27. Kye M.J., Niederst E.D., Wertz M.H. et al. SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet 2014;23(23):6318–31. DOI: 10.1093/hmg/ddu350

28. Giesemann T., Rathke-Hartlieb S., Rothkegel M. et al. A role for polyproline motifs in the spinal muscular atrophy protein SMN: Profilins bind to and colocalize with SMN in nuclear gems. J Biol Chem 1999;274(53):37908–14. DOI: 10.1074/jbc.274.53.37908

29. Carlier M.F., Shekhar S. Global treadmilling coordinates actin turnover and controls the size of actin networks. Nat Rev Mol Cell Biol 2017;18(6):389–401. DOI: 10.1038/nrm.2016.172

30. Sharma A., Lambrechts A., Hao Le T. et al. A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells. Exp Cell Res 2005;309(1):185–97. DOI: 10.1016/j.yexcr.2005.05.014

31. Nölle A., Zeug A., van Bergeijk J. et al. The spinal muscular atrophy disease protein SMN is linked to the Rho-kinase pathway via profilin. Hum Mol Genet 2011;20(24):4865–78. DOI: 10.1093/hmg/ddr425

32. Antoine M., Patrick K.L., Soret J. et al. Splicing defects of the profilin gene alter actin dynamics in an S. pombe SMN mutant. Iscience 2020;23(1):100809. DOI: 10.3389/fncel.2015.00506

33. Bora G., Hensel N., Rademacher S. et al. Microtubule-associated protein 1B dysregulates microtubule dynamics and neuronal mitochondrial transport in spinal muscular atrophy. Hum Mol Genet 2020;29(24):3935–44. DOI: 10.1093/hmg/ddaa275

34. Torres-Benito L., Neher M.F., Cano R. et al. SMN requirement for synaptic vesicle, active zone and microtubule postnatal organization in motor nerve terminals. PloS One 2011;6(10):e26164. DOI: 10.1371/journal.pone.0026164

35. Fuller H.R., Mandefro B., Shirran S.L. et al. Spinal muscular atrophy patient iPSC-derived motor neurons have reduced expression of proteins important in neuronal development. Front Cell Neurosci 2016;9:506. DOI: 10.3389/fncel.2015.00506

36. Wen H.L., Lin Y.T., Ting C.H. et al. Stathmin, a microtubuledestabilizing protein, is dysregulated in spinal muscular atrophy. Hum Mol Genet 2010;19(9):1766–78. DOI: 10.1093/hmg/ddq058

37. Wen H.L., Ting C.H., Liu H.C. et al. Decreased stathmin expression ameliorates neuromuscular defects but fails to prolong survival in a mouse model of spinal muscular atrophy. Neurobiol Dis 2013;52:94–103. DOI: 10.1016/j.nbd.2012.11.015

38. Villalón E., Kline R.A, Smith C.E. et al. AAV9-Stathmin1 gene delivery improves disease phenotype in an intermediate mouse model of spinal muscular atrophy. Hum Mol Genet 2019;28(22):3742–54. DOI: 10.1093/hmg/ddz188

39. Donlin-Asp P.G., Bassell G.J., Rossoll W. A role for the survival of motor neuron protein in mRNP assembly and transport. Curr Opin Neurobiol 2016;39:53–61. DOI: 10.1016/j.conb.2016.04.004

40. Custer S.K., Foster J.N., Astroski J.W., Androphy E.J. Abnormal Golgi morphology and decreased COPI function in cells with low levels of SMN. Brain Res 2019;1706:135–46. DOI: 10.1016/j.brainres.2018.11.005

41. Custer S.K., Astroski J.W., Li H.X., Androphy E.J. Interaction between alpha-COP and SMN ameliorates disease phenotype in a mouse model of spinal muscular atrophy. Biochem Biophys Res Commun 2019;514(2):530–37. DOI: 10.1016/j.bbrc.2019.04.176

42. Fuller H.R., Gillingwater T.H., Wishart T.M. Commonality amid diversity: Multi-study proteomic identification of conserved disease mechanisms in spinal muscular atrophy. Neuromuscul Disord 2016;26(9):560–9. DOI: 10.1016/j.nmd.2016.06.004

43. Groen E.J., Gillingwater T.H. UBA1: at the crossroads of ubiquitin homeostasis and neurodegeneration. Trends Mol Med 2015;21(10):622–32. DOI: 10.1016/j.molmed.2015.08.003

44. Chang H.C., Hung W.C., Chuang Y.J., Jong Y.J. Degradation of survival motor neuron (SMN) protein is mediated via the ubiquitin/proteasome pathway. Neurochem Int 2004;45(7):1107–12. DOI: 10.1016/j.neuint.2004.04.005

45. Powis R.A., Karyka E., Boyd P. et al. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy. JCI Insight 2016;1(11):e87908. DOI: 10.1172/jci.insight.87908

46. Wishart T.M., Mutsaers C.A., Riessland M. et al. Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy. J Clin Invest 2014;124(4):1821–34. DOI: 10.1172/JCI71318

47. Shorrock H.K., van der Hoorn D., Boyd P.J. et al. UBA1/GARSdependent pathways drive sensory-motor connectivity defects in spinal muscular atrophy. Brain 2018;141(10):2878–94. DOI: 10.1093/brain/awy237

48. Markovitz R., Ghosh R., Kuo M.E. et al. GARS-related disease in infantile spinal muscular atrophy: Implications for diagnosis and treatment. Am J Med Genet A 2020;182(5):1167–76. DOI: 10.1002/ajmg.a.61544


Review

For citations:


Vlasenko A.I., Nazarov V.D., Lapin S.V., Mazing A.V., Surkova E.A., Blinova T.V., Topuzova M.P., Alekseeva T.M. Molecular mechanism of neurodegeneration in spinal muscular atrophy. Neuromuscular Diseases. 2024;14(3):72-80. (In Russ.) https://doi.org/10.17650/2222-8721-2024-14-3-72-80

Views: 215


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-8721 (Print)
ISSN 2413-0443 (Online)