Preview

Neuromuscular Diseases

Advanced search

Intracortical inhibiton assessment using threshold tracking technique in amyotrophic lateral sclerosis

https://doi.org/10.17650/2222-8721-2024-14-4-12-20

Abstract

Background. Assessment of short-interval intracortical inhibition (SICI) using paired-pulse transcranial magnetic stimulation (TMS) and the threshold tracking technique is a promising approach to develop biomarkers of motor cortex damage in amyotrophic lateral sclerosis (ALS). Both high sensitivity and specificity of this approach were shown previously; however, almost all studies in this field were conducted by one group of authors.

Aim. The replication of data showing impairment of SICI assessed by threshold tracking technique in patients with ALS.

Materials and methods. 18 patients with ALS and 13 healthy volunteers were included into the study. Functional state of the patients was assessed as well as disease duration, form, stage and progression rate. Following values were determined in all participants using TMS: 1) resting motor threshold (MT); 2) mean motor evoked potential (MEP) amplitude of 30 stimuli applied with an intensity of 120 % MT; 3) SICI assessed using an algorithm based on paralleled optimized threshold tracking with interstimulus interval (ISI) of 1.0 ms, 1.5 ms, 2.0 ms, 2.5 ms, 3.0 ms, 3.5 ms, 4.0 ms, 5.0 ms, 7.0 ms, as well as mean inhibition for values with ISI from 1.0 to 3.0 ms and from 1.0 to 7.0 ms.

Results. No significant differences between groups were observed for MT and MEP amplitude. Significant decrease of SICI with ISI 1.0 and 2.0 ms as well as mean SICI from 1.0 and 3.0 ms was observed in ALS. No significant correlations of MT, MEP amplitude or SICI with clinical values were found.

Conclusion. This replication study has shown the ability of paired-pulse TMS with threshold tracking technique to identify the impairment of intracortical inhibition in patients with ALS.

About the Authors

I. S. Bakulin
Research Center of Neurology
Russian Federation

 Ilya Sergeevich Bakulin 

 80 Volokolamskoe Shosse, Моscow 125367 



A. Kh. Zabirova
Research Center of Neurology
Russian Federation

 80 Volokolamskoe Shosse, Моscow 125367 



A. G. Poydasheva
Research Center of Neurology
Russian Federation

 80 Volokolamskoe Shosse, Моscow 125367 



D. O. Sinitsyn
Research Center of Neurology
Russian Federation

 80 Volokolamskoe Shosse, Моscow 125367 



D. Yu. Lagoda
Research Center of Neurology
Russian Federation

 80 Volokolamskoe Shosse, Моscow 125367 



A. R. Nagieva
Research Center of Neurology
Russian Federation

 80 Volokolamskoe Shosse, Моscow 125367 



M. N. Zakharova
Research Center of Neurology
Russian Federation

 80 Volokolamskoe Shosse, Моscow 125367 



N. A. Suponeva
Research Center of Neurology
Russian Federation

 80 Volokolamskoe Shosse, Моscow 125367 



M. A. Piradov
Research Center of Neurology
Russian Federation

 80 Volokolamskoe Shosse, Моscow 125367 



References

1. Feldman E.L., Goutman S.A., Petri S. et al. Amyotrophic lateral sclerosis. Lancet 2022;400(10360):1363–80. DOI: 10.1016/S0140-6736(22)01272-7

2. Corcia P., Lunetta C., Vourch P. et al. Time for optimism in amyotrophic lateral sclerosis. Eur J Neurol 2023;30(5):1459–64. DOI: 10.1111/ene.15738

3. Saini A., Chawla P.A. Breaking barriers with tofersen: Enhancing therapeutic opportunities in amyotrophic lateral sclerosis. Eur J Neurol 2024;31(2):e16140. DOI: 10.1111/ene.16140

4. Brooks B.R., Miller R.G., Swash M. et al. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000;1(5):293–9. DOI: 10.1080/146608200300079536

5. Shefner J.M., Al-Chalabi A., Baker M.R. et al. A proposal for new diagnostic criteria for ALS. Clin Neurophysiol 2020;131(8):1975–8. DOI: 10.1016/j.clinph.2020.04.005

6. Bakulin I.S., Zakroyshchikova I.V., Suponeva N.A., Zakharova M.N. Amyotrophic lateral sclerosis: Clinical heterogeneity and approaches to classification. Nervno-myshechnye bolezni = Neuromuscular Diseases 2017;7(3):10–20. (In Russ.). DOI: 10.17650/2222-8721-2017-7-3-10-20

7. Pinto W.B.V.R., Debona R., Nunes P.P. et al. Atypical motor neuron disease variants: Still a diagnostic challenge in Neurology. Rev Neurol (Paris) 2019;175(4):221–32. DOI: 10.1016/j.neurol.2018.04.016

8. Kraemer M., Buerger M., Berlit P. Diagnostic problems and delay of diagnosis in amyotrophic lateral sclerosis. Clin Neurol Neurosurg 2010;112(2):103–5. DOI: 10.1016/j.clineuro.2009.10.014

9. Gwathmey K.G., Corcia P., McDermott C.J. et al. Diagnostic delay in amyotrophic lateral sclerosis. Eur J Neurol 2023;30(9):2595– 601. DOI: 10.1111/ene.15874 10. Timmins H.C., Vucic S., Kiernan M.C. Cortical hyperexcitability in amyotrophic lateral sclerosis: From pathogenesis to diagnosis. Curr Opin Neurol 2023;36(4):353–9. DOI: 10.1097/WCO.0000000000001162

10. Vucic S., Stanley Chen K.H., Kiernan M.C. et al. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023;150:131–75. DOI: 10.1016/j.clinph.2023.03.010

11. Vucic S., de Carvalho M., Bashford J., Alix J.J.P. Contribution of neurophysiology to the diagnosis and monitoring of ALS. Int Rev Neurobiol 2024;176:87–118. DOI: 10.1016/bs.irn.2024.04.001

12. Crabé R., Aimond F., Gosset P. et al. How degeneration of cells surrounding motoneurons contributes to amyotrophic lateral sclerosis. Cells 2020;9(12):2550. DOI: 10.3390/cells9122550

13. Vucic S., van den Bos M., Menon P. et al. Utility of threshold tracking transcranial magnetic stimulation in ALS. Clin Neurophysiol Pract 2018;3:164–72. DOI: 10.1016/j.cnp.2018.10.002

14. Vucic S., Cheah B.C., Yiannikas C., Kiernan M.C. Cortical excitability distinguishes ALS from mimic disorders. Clin Neurophysiol 2011;122(9):1860–6. DOI: 10.1016/j.clinph.2010.12.062

15. Menon P., Geevasinga N., Yiannikas C. et al. Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: A prospective study. Lancet Neurol 2015;14(5):478–84. DOI: 10.1016/S1474-4422(15)00014-9 17. Geevasinga N., Menon P., Yiannikas C. et al. Diagnostic utility of cortical excitability studies in amyotrophic lateral sclerosis. Eur J Neurol 2014;21(12):1451–7. DOI: 10.1111/ene.12422

16. Geevasinga N., Howells J., Menon P. et al. Amyotrophic lateral sclerosis diagnostic index: Toward a personalized diagnosis of ALS. Neurology 2019;92(6):e536–47. DOI: 10.1212/WNL.0000000000006876

17. Tankisi H., Nielsen C.S., Howells J. et al. Early diagnosis of amyotrophic lateral sclerosis by threshold tracking and conventional transcranial magnetic stimulation. Eur J Neurol 2021;28(9):3030–9. DOI: 10.1111/ene.15010

18. Bakulin I.S., Zabirova A.H., Poydasheva A.G. et al. Reliability of intracortical inhibiton measured using threshold tracking technique. Nervno-myshechnye bolezni = Neuromuscular Diseases 2023;13(4):10–9. (In Russ.). DOI: 10.17650/2222-8721-2023-13-4-10-19

19. Roche J.C., Rojas-Garcia R., Scott K.M. et al. A proposed staging system for amyotrophic lateral sclerosis. Brain 2012;135(Pt 3):847–52. DOI: 10.1093/brain/awr351

20. Groppa S., Oliviero A., Eisen A. et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2012;123(5):858–82. DOI: 10.1016/j.clinph.2012.01.010

21. Higashihara M., Pavey N., Menon P. et al. Reduction in short interval intracortical inhibition from the early stage reflects the pathophysiology in amyotrophic lateral sclerosis: A meta-analysis study. Eur J Neurol 2024;31(7):e16281. DOI: 10.1111/ene.16281

22. Nielsen C.S., Samusyte G., Pugdahl K. et al. Test-retest reliability of short-interval intracortical inhibition assessed by thresholdtracking and automated conventional techniques. eNeuro 2021;8(5):ENEURO.0103-21.2021. DOI: 10.1523/ENEURO.0103-21.2021

23. Tankisi H., Cengiz B., Howells J. et al. Short-interval intracortical inhibition as a function of inter-stimulus interval: Three methods compared. Brain Stimul 2021;14(1):22–32. DOI: 10.1016/j.brs.2020.11.002

24. Samusyte G., Bostock H., Rothwell J., Koltzenburg M. Shortinterval intracortical inhibition: Comparison between conventional and threshold-tracking techniques. Brain Stimul 2018;11(4):806–17. DOI: 10.1016/j.brs.2018.03.002

25. McMackin R., Tadjine Y., Fasano A. et al. Examining short interval intracortical inhibition with different transcranial magnetic stimulation-induced current directions in ALS. Clin Neurophysiol Pract 2024;9:120–9. DOI: 10.1016/j.cnp.2024.03.001

26. Tankisi H., Pia H., Strunge K. et al. Three different short-interval intracortical inhibition methods in early diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2023;24(1-2):139–47. DOI: 10.1080/21678421.2022.2101926

27. Menon P., Higashihara M., van den Bos M. et al. Cortical hyperexcitability evolves with disease progression in ALS. Ann Clin Transl Neurol 2020;7(5):733–41. DOI: 10.1002/acn3.51039

28. Shibuya K., Park S.B., Geevasinga N. et al. Threshold tracking transcranial magnetic stimulation: Effects of age and gender on motor cortical function. Clin Neurophysiol 2016;127(6):2355–61. DOI: 10.1016/j.clinph.2016.03.009

29. Peinemann A., Lehner C., Conrad B., Siebner H.R. Age-related decrease in paired-pulse intracortical inhibition in the human primary motor cortex. Neurosci Lett 2001;313(1–2):33–6. DOI: 10.1016/s0304-3940(01)02239-x


Review

For citations:


Bakulin I.S., Zabirova A.Kh., Poydasheva A.G., Sinitsyn D.O., Lagoda D.Yu., Nagieva A.R., Zakharova M.N., Suponeva N.A., Piradov M.A. Intracortical inhibiton assessment using threshold tracking technique in amyotrophic lateral sclerosis. Neuromuscular Diseases. 2024;14(4):12-20. (In Russ.) https://doi.org/10.17650/2222-8721-2024-14-4-12-20

Views: 175


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-8721 (Print)
ISSN 2413-0443 (Online)