Quantitative and structural features of the SMN1 and SMN2 genes in patients with spinal muscular atrophy 5q
https://doi.org/10.17650/2222-8721-2024-14-4-21-28
Abstract
Background. Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by loss of motor neurons. The cause of neurodegeneration is predominantly a homozygous deletion of the SMN1 gene, leading to a decrease in the synthesis of the SMN protein. The clinical picture of the disease is heterogeneous and varies depending on the age of onset and the ability to perform motor functions. Several genetic and molecular modifiers have been identified that are thought to influence the severity of SMA. One of the most proven factors is the number of copies of the SMN2 gene.
Aim. Description of quantitative and structural features of the SMN1 and SMN2 genes in patients with SMA 5q.
Materials and methods. The study included DNA samples from patients examined for the number of copies of the SMN1 and SMN2 genes at the Scientific and Methodological Center for Molecular Medicine, I.P. Pavlov First Saint Petersburg State Medical University, for the period from 2021 to 2022. Gene copy numbers were determined by multiplex ligation-dependent probe amplification using the SALSA MLPA P021 SMA kit (MRC Holland). We assessed an indirect parameter of aggressiveness (the age of the patient’s visit to the laboratory) to assess the severity of clinical manifestations of SMA. Statistical analysis was carried out using the statistical data processing program GraphPad Prism9.
Results. A statistically significant direct correlation was found when studying the relationship between the number of copies of the SMN2 gene and the age of molecular diagnosis (r = 0.3960, p <0.0001). An assessment of the significance of differences between individual groups of patients gave a statistically significant result: <0.0001 when comparing groups of patients with 2 and 3 copies; <0.0001 – with 2 and 4 copies; 0.0370 – with 3 and 4 copies. 9 % of patients had a hybrid SMN1/SMN2 structure. Therefore, the significance of differences between the age of molecular diagnosis of patients with homozygous deletion of SMN1 and the age of molecular diagnosis of patients with the hybrid SMN1/SMN2 gene between groups with the same number of copies of the SMN2 gene was assessed. A statistically significant result (p = 0.0070) was found between patients with SMN1 deletion + 2 copies of SMN2 and patients with the hybrid gene SMN1/SMN2 + 2 copies of SMN2.
Conclusion. The number of SMN2 gene copies correlates with the age of molecular diagnosis and indirectly predicts the age of SMA onset. The effect of the SMN1/SMN2 hybrid gene on the age of molecular diagnosis of SMA was comparable to the effect of the regular SMN2 gene.
About the Authors
A. I. VlasenkoRussian Federation
2 Akkuratova St., Saint Petersburg 197341
V. D. Nazarov
Russian Federation
6–8 Lva Tolstogo St., Saint Petersburg 197022
S. V. Lapin
Russian Federation
6–8 Lva Tolstogo St., Saint Petersburg 197022
A. V. Mazing
Russian Federation
6–8 Lva Tolstogo St., Saint Petersburg 197022
E. A. Surkova
Russian Federation
6–8 Lva Tolstogo St., Saint Petersburg 197022
T. V. Blinova
Russian Federation
6–8 Lva Tolstogo St., Saint Petersburg 197022
T. M. Alekseeva
Russian Federation
2 Akkuratova St., Saint Petersburg 197341
References
1. Butchbach M. Genomic variability in the survival motor neuron genes (SMN1 and SMN2): Implications for spinal muscular atrophy phenotype and therapeutics development. Int J Mol Sci 2021;22(15):7896. DOI: 10.3390/ijms22157896.
2. SMA Families. Available at: https://f-sma.ru. (In Russ.).
3. Hosseinibarkooie S., Schneider S., Wirth B. Advances in understanding the role of disease-associated proteins in spinal muscular atrophy. Expert Rev Proteomics 2017;14(7):581–92. DOI: 10.1080/14789450.2017.1345631
4. Hosseinibarkooie S., Peters M., Torres-Benito L. et al. The power of human protective modifiers: PLS3 and CORO1C unravel impaired endocytosis in spinal muscular atrophy and rescue SMA phenotype. Am J Hum Genet 2016;99(3):647–65. DOI: 10.1016/j.ajhg.2016.07.014
5. Janzen E., Mendoza-Ferreira N., Hosseinibarkooie S. et al. CHP1 reduction ameliorates spinal muscular atrophy pathology by restoring calcineurin activity and endocytosis. Brain 2018;141(8):2343–61. DOI: 10.1093/brain/awy167
6. Hauke J., Riessland M., Lunke S. et al. Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition. Hum Mol Genet 2009;18(2):304–17. DOI: 10.1093/hmg/ddn357
7. Cao Y., Qu Y., He S. et al. Association between SMN2 methylation and disease severity in Chinese children with spinal muscular atrophy. J Zhejiang Univ Sci B 2016;17(1):76–82. DOI: 10.1631/jzus.B1500072
8. Zheleznyakova G., Voisin S., Kiselev A. et al. Genome-wide analysis shows association of epigenetic changes in regulators of Rab and Rho GTPases with spinal muscular atrophy severity. Eur J Hum Genet 2013;21(9):988–93. DOI: 10.1038/ejhg.2012.293
9. Maretina M., Egorova A., Baranov V., Kiselev A. DYNC1H1 gene methylation correlates with severity of spinal muscular atrophy. Ann Hum Genet 2019;83(2):73–81. DOI: 10.1111/ahg.12288
10. Blatnik A., McGovern V., Burghes A. What genetics has told us and how it can inform future experiments for spinal muscular atrophy, a perspective. Int J Mol Sci 2021;22(16):8494. DOI: 10.3390/ijms22168494
11. Russman B.S. Encyclopedia of the Neurological Sciences. Academic Press, 2003. Pp. 368–372. DOI: 10.1016/B0-12-226870-9/00948-5
12. Savad S., Ashrafi M., Samadaian N. et al. A comprehensive overview of SMN and NAIP copy numbers in Iranian SMA patients. Sci Rep 2023;13(1):3202. DOI: 10.1038/s41598-023-30449-7
13. Ahn E., Yum M., Kim E. et al. Genotype-phenotype correlation of SMN1 and NAIP deletions in Korean patients with spinal muscular atrophy. J Clin Neurol 2017;13(1):27–31. DOI: 10.3988/jcn.2017.13.1.27
14. Zhang Y., He J., Zhang Y. et al. The analysis of the association between the copy numbers of survival motor neuron gene 2 and neuronal apoptosis inhibitory protein genes and the clinical phenotypes in 40 patients with spinal muscular atrophy: Observational study. Medicine (Baltimore) 2020;99(3):e18809. DOI: 10.1097/MD.0000000000018809
15. Powis Z., Nashawaty M., Paal A., Liaquat K. P271: Beyond SMN1: Review of genotype-phenotype correlation in individuals with ≥4 SMN2 copy numbers. Genet Med Open 2023;1(1). DOI: 10.1016/j.gimo.2023.100299
16. Singh R., Singh N.N. Mechanism of splicing regulation of spinal muscular atrophy genes. Adv Neurobiol 2018;20:31–61. DOI: 10.1007/978-3-319-89689-2_2
17. Singh N., Ottesen E., Singh R. A survey of transcripts generated by spinal muscular atrophy genes. Biochim Biophys Acta Gene Regul Mech 2020;1863(8):194562. DOI: 10.1016/j.bbagrm.2020.194562
18. Pagliarini V., Pelosi L., Bustamante M. et al. SAM68 is a physiological regulator of SMN2 splicing in spinal muscular atrophy. J Cell Biol 2015;211(1):77–90. DOI: 10.1083/jcb.201502059
19. Chen Y., Yuo C., Yang W. et al. Extracellular pH change modulates the exon 7 splicing in SMN2 mRNA. Mol Cell Neurosci 2008;39(2):268–72. DOI: 10.1016/j.mcn.2008.07.002
20. Jiang T., Qu R., Liu X. et al. HnRNPR strongly represses splicing of a critical exon associated with spinal muscular atrophy through binding to an exonic AU-rich element. J Med Genet 2023;60(11):1105–15. DOI: 10.1136/jmg-2023-109186
21. Singh N., Singh R., Androphy E. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res 2007;35(2):371–89. DOI: 10.1093/nar/gkl1050
22. Prior T., Krainer A., Hua Y. et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet 2009;85(3):408–13. DOI: 10.1016/j.ajhg.2009.08.002
23. Wu X., Wang S., Sun J. et al. A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy. Hum Mol Genet 2017;26(14):2768–80. DOI: 10.1093/hmg/ddx166
24. Calucho M., Bernal S., Alías L. et al. Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord 2018;28(3):208–15. DOI: 10.1016/j.nmd.2018.01.003
25. Zabnenkova V.V., Dadali E.L., Polyakov A.V. Proximal spinal muscular atrophy types I–IV: features of molecular genetic diagnostics. Nervno-myshechnye bolezni = Neuromuscular Diseases 2013;(3):27–31. (In Russ.).
26. Cuscó I., Barceló M., del Rio E. et al. Characterisation of SMN hybrid genes in Spanish SMA patients: De novo, homozygous and compound heterozygous cases. Hum Genet 2001;108(3):222–9. DOI: 10.1007/s004390000452
27. Kubo Y., Nishio H., Saito K. A new method for SMN1 and hybrid SMN gene analysis in spinal muscular atrophy using long-range PCR followed by sequencing. J Hum Genet 2015;60(5):233–9. DOI: 10.1038/jhg.2015.16
28. Niba E. Nishio H. Wijaya Y. et al. Clinical phenotypes of spinal muscular atrophy patients with hybrid SMN gene. Brain Dev 2021;43(2):294–302. DOI: 10.1016/j.braindev.2020.09.005
29. Qu Y., Bai J., Cao Y. et al. Mutation spectrum of the survival of motor neuron 1 and functional analysis of variants in Chinese spinal muscular atrophy. J Mol Diagn 2016;18(5):741–52. DOI: 10.1016/j.jmoldx.2016.05.004.
30. Hahnen E., Schönling J., Rudnik-Schöneborn S. et al. Hybrid survival motor neuron genes in patients with autosomal recessive spinal muscular atrophy: New insights into molecular mechanisms responsible for the disease. Am J Hum Genet 1996;59(5):1057–65.
31. Wadman R., Jansen M., Stam M. et al. Intragenic and structural variation in the SMN locus and clinical variability in spinal muscular atrophy. Brain Commun 2020;2(2):fcaa075. DOI: 10.1093/braincomms/fcaa075
32. Dil A.V., Nazarov V.D., Sidorenko D.V. et al. Study of the features of genetic changes in the SMN1 gene in spinal muscular atrophy 5q. Nervno-myshechnye bolezni = Neuromuscular Diseases 2022;12(3):36–44. (In Russ.). DOI: 10.17650/2222-8721-2022-12-3-36-44
33. Vitkovskaya I.P., Zelenova O.V., Sterlikov S.A. et al. The first prospective multicenter non-interventional study of the prevalence of spinal muscular atrophy in the Russian Federation. Sovremennye problemy zdravookhraneniya i meditsinskoy statistiki = Modern Problems of Health Care and Medical Statistics 2022;(3):393–409. (In Russ.). DOI: 10.24412/2312-2935-2022-3-393-409
34. Vill K., Schwartz O., Blaschek A et al. Newborn screening for spinal muscular atrophy in Germany: Clinical results after 2 years. Orphanet J Rare Dis 2021;16(1):153. DOI: 10.1186/s13023-021-01783-8
35. Yalcintepe S., Karal Y., Demir S et al. The frequency of SMN1, SMN2 copy numbers in 246 Turkish cases analyzed with MLPA method. Glob Med Genet 2023;10(2):117–22. DOI: 10.1055/s-0043-1770055
36. Zheleznyakova G., Kiselev A., Vakharlovsky V. et al. Genetic and expression studies of SMN2 gene in Russian patients with spinal muscular atrophy type II and III. BMC Med Genet 2011;12:96. DOI: 10.1186/1471-2350-12-96
37. DiDonato C.J., Morgan K., Carpten J.D. et al. Association between Ag1-CA alleles and severity of autosomal recessive proximal spinal muscular atrophy. Am J Hum Genet 1994;55(6):1218–29.
38. Stabley D.L., Holbrook J., Scavina M. et al. Detection of SMN1 to SMN2 gene conversion events and partial SMN1 gene deletions using array digital PCR. Neurogenetics 2021;22(1):53–64. DOI: 10.1007/s10048-020-00630-5
Review
For citations:
Vlasenko A.I., Nazarov V.D., Lapin S.V., Mazing A.V., Surkova E.A., Blinova T.V., Alekseeva T.M. Quantitative and structural features of the SMN1 and SMN2 genes in patients with spinal muscular atrophy 5q. Neuromuscular Diseases. 2024;14(4):21-28. (In Russ.) https://doi.org/10.17650/2222-8721-2024-14-4-21-28