Preview

Neuromuscular Diseases

Advanced search

Functional class criteria identification in patients with spinal muscular atrophy 5q

https://doi.org/10.17650/2222-8721-2024-14-4-58-70

Abstract

Spinal muscular atrophy 5q (SMA) is one of the most common inherited neuromuscular diseases in children with an autosomal recessive type of inheritance. Homozygous deletion of exons 7 or 7–8 of the SMN1 gene encoding the motor neuron survival protein is responsible for 95 % of cases. SMA is characterized by a steadily progressive course with the development of paresis, muscle atrophy, loss of previously acquired motor skills, respiratory failure and skeletal deformities. The introduction of pathogenetic therapy in recent years has significantly changed the trajectory of SMA – patients survive, restore previously lost motor skills and acquire new ones. The clinical classification, which includes 5 types of SMA, is currently not a reliable reflection of the functional state of the child in dynamics. In 2005, a functional classification was recommended based on the patient’s current status: non-sitters (lying), sitters, and walkers. The article provides a summary of historical concepts regarding functional classification in SMA patients, as well as the criteria used in clinical trials and observations. We proposed criteria for categorizing SMA patients into a specific functional class by analyzing the available literature and making recommendations on using the classification in real clinical practice.

About the Authors

Yu. O. Papina
Yu.E. Veltishchev Research Clinical Institute of Pediatrics and Pediatric Surgery, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

 Yuliya Olegovna Papina  

 2 Taldomskaya St., Moscow 125412 



E. A. Melnik
Yu.E. Veltishchev Research Clinical Institute of Pediatrics and Pediatric Surgery, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; Research Centre for Medical Genetics
Russian Federation

 2 Taldomskaya St., Moscow 125412

 1 Moskvorechye St., Moscow 115522 



E. D. Belousova
Yu.E. Veltishchev Research Clinical Institute of Pediatrics and Pediatric Surgery, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

 2 Taldomskaya St., Moscow 125412 



S. B. Artemyeva
Yu.E. Veltishchev Research Clinical Institute of Pediatrics and Pediatric Surgery, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

 2 Taldomskaya St., Moscow 125412 



A. V. Monakhova
Yu.E. Veltishchev Research Clinical Institute of Pediatrics and Pediatric Surgery, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

 2 Taldomskaya St., Moscow 125412 



O. A. Shidlovskaya
Yu.E. Veltishchev Research Clinical Institute of Pediatrics and Pediatric Surgery, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

 2 Taldomskaya St., Moscow 125412 



I. V. Shulyakova
Yu.E. Veltishchev Research Clinical Institute of Pediatrics and Pediatric Surgery, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

 2 Taldomskaya St., Moscow 125412 



D. V. Vlodavets
Yu.E. Veltishchev Research Clinical Institute of Pediatrics and Pediatric Surgery, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

 2 Taldomskaya St., Moscow 125412 



References

1. Ross L.F., Kwon J.M. Spinal muscular atrophy: Past, present, and future. Neoreviews 2019;20(8):e437–51. DOI: 10.1542/neo.20-8-e437

2. Kolb S.J., Kissel J.T. Spinal muscular atrophy: A timely review. Arch Neurol 2011;68(8):979–84. DOI: 10.1001/archneurol.2011.74

3. Akhkiamova M.A., Shchagina O.A., Polyakov A.V. Factors modifying the course of spinal muscular atrophy 5q. Nervno-myshechnye bolezni = Neuromuscular Diseases 2023;13(4):62–73. (In Russ.). DOI: 10.17650/2222- 8721-2023-13-4-62-73

4. Darras B.T. Spinal muscular atrophies. Pediatr Clin North Am 2015; 62(3):743–66. DOI: 10.1016/j.pcl.2015.03.010

5. Zabnenkova V.V., Dadali E.L., Artemyeva S.B. et al. SMN1 gene point mutations in type I–IV proximal spinal muscular atrophy patients with a single copy of SMN1. Genetika = Genetics 2015;9(51):1075–82. (In Russ.). DOI: 10.7868/s0016675815080123

6. Munsat T., Davies K. International SMA Consortium Meeting (26–28 June 1992, Bonn, Germany). Neuromuscul Disord 1992;2(5–6):423–8. DOI: 10.1016/s0960-8966(06)80015-5

7. Verhaart I.E.C., Robertson A., Wilson I.J. et al. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy – a literature review. Orphanet J Rare Dis 2017;12(1):124. DOI: 10.1186/s13023-017-0671-8

8. Finkel R., Bertini E., Muntoni F., Mercuri E. 209th ENMC International Workshop: Outcome measures and clinical trial readiness in spinal muscular atrophy, 7–9 November 2014, Heemskerk, The Netherlands. Neuromuscul Disord 2015;25(7):593–602. DOI: 10.1016/j.nmd.2015.04.009

9. Clinical recommendations “5q-associated spinal muscular atrophy”. Vol. 2025. Adults. Available at: https://cr.minzdrav.gov.ru/recomend/780_1. (In Russ.).

10. Clinical recommendations “Proximal spinal muscular atrophy 5q”. 2023–2025. Children. Available at: https://cr.minzdrav.gov.ru/schema/593_3. (In Russ.).

11. Wang C.H., Finkel R.S., Bertini E.S. et al. Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol 2007;22(8):1027–49. DOI: 10.1177/0883073807305788

12. A Guide to the 2017 International Standards of Care for SMA. Spinal Muscular Atrophy. UK, Cure SMA, SMA Europe, 2017. Available at: https://smacare.guide/.

13. Instructions for medical use of the drug Nusinersen. Registration number LP-(005730). Available at: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=898d0ebf-292c-4e82-8a88-e7027e1ee392. (In Russ.).

14. Instructions for medical use of the drug Risdiplam. Registration number LP-006602. Available at: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=914f5329-4619-411d-952b-1e5f05b91243. (In Russ.).

15. Instructions for medical use of the drug Onemnogen abeparvovec. Registration number LP-(001462)-(RG-RU). Available at: https//grls.minzdrav.gov.ru/Grls_View_v2.aspx?routingGuid=ec6cd7e2-6be5-4d03-8a71-9cca5b2e8cc7. (In Russ.).

16. Finkel R.S., Mercuri E., Darras B.T. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 2017;377(18):1723–32. DOI: 10.1056/nejmoa1702752

17. Darras B.T., Masson R., Mazurkiewicz-Bełdzińska M. et al. Risdiplam-treated infants with type 1 spinal muscular atrophy versus historical controls. N Engl J Med 2021;385(5):427–35. DOI: 10.1056/nejmoa2102047

18. Mendell J.R., Al-Zaidy S., Shell R. et al. Single-dose genereplacement therapy for spinal muscular atrophy. N Engl J Med 2017;377(18):1713–22. DOI: 10.1056/nejmoa1706198

19. Day J.W., Finkel R.S., Chiriboga C.A. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): An open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021;20(4):284–93. DOI: 10.1016/S1474-4422(21)00001-6

20. Mercuri E., Muntoni F., Baranello G. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): An open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021;20(10):832–41. DOI: 10.1016/S1474-4422(21)00251-9

21. Haché M., Swoboda K.J., Sethna N. et al. Intrathecal injections in children with spinal muscular atrophy: Nusinersen clinical trial experience. J Child Neurol 2016;31(7):899–906. DOI: 10.1177/0883073815627882.

22. Mercuri E., Darras B.T., Chiriboga C.A. et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med 2018;378(7):625–35. DOI: 10.1056/nejmoa1710504

23. Mercuri E., Deconinck N., Mazzone E.S. et al. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): A phase 3, double-blind, randomised, placebo-controlled trial. Lancet Neurol 2022;21(1):42–52. DOI: 10.1016/s1474-4422(21)00367-7

24. Mercuri E., Baranello G., Boespflug-Tanguy O. et al. Risdiplam in types 2 and 3 spinal muscular atrophy: A randomised, placebo-controlled, dose-finding trial followed by 24 months of treatment. Eur J Neurol 2023;30(7):1945–56. DOI: 10.1111/ene.15499

25. Oskoui M., Day J.W., Deconinck N. et al. Two-year efficacy and safety of risdiplam in patients with type 2 or non-ambulant type 3 spinal muscular atrophy (SMA). J Neurol 2023;270(5):2531–46. DOI: 10.1007/s00415-023-11560-1.

26. Finkel R.S., Darras B.T., Mendell J.R. et al. Intrathecal onasemnogene abeparvovec for sitting, nonambulatory patients with spinal muscular atrophy: Phase I ascending-dose study (STRONG). J Neuromuscul Dis 2023;10(3):389–404. DOI: 10.3233/JND-221560

27. Chiriboga C.A., Bruno C., Duong T. et al. Risdiplam in patients previously treated with other therapies for spinal muscular atrophy: An interim analysis from the JEWELFISH study. Neurol Ther 2023;12(2):543–57. DOI: 10.1007/s40120-023-00444-1

28. Strauss K.A., Farrar M.A., Muntoni F. et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: The Phase III SPR1NT trial. Nat Med 2022;28(7):1381–9. DOI: 10.1038/s41591-022-01866-4

29. Strauss K.A., Farrar M.A., Muntoni F. et al. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: The Phase III SPR1NT trial. Nat Med 2022;28(7):1390–7. DOI: 10.1038/s41591-022-01867-3

30. Finkel R., Farrar M., Vlodavets D. et al. RAINBOWFISH: Preliminary efficacy and safety data in risdiplam-treated infants with presymptomatic spinal muscular atrophy (SMA). Neuromuscul Disord 2022;32:S85, S86. DOI: 10.1016/j.nmd.2022.07.183

31. De Vivo D.C., Bertini E., Swoboda K.J. et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the phase 2 NURTURE study. Neuromuscul Disord 2019;29(11):842–56. DOI: 10.1016/j.nmd.2019.09.007

32. Cattinari M.G., de Lemus M., Tizzano E. RegistrAME: The Spanish self-reported patient registry of spinal muscular atrophy. Orphanet J Rare Dis 2024;19(1):1–13. DOI: 10.1186/s13023-024-03071-7

33. Finkel R.S., Day J.W., De Vivo D.C.et al. RESTORE: A prospective multinational registry of patients with genetically confirmed spinal muscular atrophy – rationale and study design. J Neuromuscul Dis 2020;7(2):145–52. DOI: 10.3233/JND-190451

34. Servais L., Day J.W., De Vivo D.C. et al. Real-world outcomes in patients with spinal muscular atrophy treated with onasemnogene abeparvovec monotherapy: Findings from the RESTORE Registry. J Neuromuscul Dis 2024;11(2):425–42. DOI: 10.3233/JND-230122

35. Pechmann A., Behrens M., Dörnbrack K. et al. Improved upper limb function in non-ambulant children with SMA type 2 and 3 during nusinersen treatment: A prospective 3-years SMArtCARE registry study. Orphanet J Rare Dis 2022;17(1):1–10. DOI: 10.1186/s13023-022-02547-8

36. Bishop K.M., Montes J., Finkel R.S. Motor milestone assessment of infants with spinal muscular atrophy using the hammersmith infant neurological exam. Part 2: Experience from a nusinersen clinical study. Muscle Nerve 2018;57(1):142–6. DOI: 10.1002/mus.25705

37. Glanzman A.M., McDermott M.P., Montes J. et al. Validation of the Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND). Pediatr Phys Ther 2011;23(4):322–6. DOI: 10.1097/PEP.0b013e3182351f04

38. Pera M.C., Coratti G., Forcina N. et al. Content validity and clinical meaningfulness of the HFMSE in spinal muscular atrophy. BMC Neurol 2017;17(1):1–10. DOI: 10.1186/s12883-017-0790-9

39. Mazzone E.S., Mayhew A., Montes J. et al. Revised upper limb module for spinal muscular atrophy: Development of a new module. Muscle Nerve 2017;55(6):869–74. DOI: 10.1002/mus.25430

40. Trundell D., Le Scouiller S., Gorni K. et al. Validity and reliability of the 32-item motor function measure in 2- to 5-year-olds with neuromuscular disorders and 2- to 25-year-olds with spinal muscular atrophy. Neurol Ther 2020;9(2):575–84. DOI: 10.1007/s40120-020-00206-3

41. Del Rosario C., Slevin M., Molloy E.J. et al. How to use the Bayley Scales of Infant and Toddler Development. Arch Dis Child Educ Pract Ed 2021;106(2):108–12. DOI: 10.1136/archdischild-2020-319063

42. Dunaway Young S., Montes J., Kramer S.S. et al. Six-minute walk test is reliable and valid in spinal muscular atrophy. Muscle Nerve 2016;54(5):836–42. DOI: 10.1002/mus.25120

43. Goodwin A.M., Cornett K.M.D., McKay M.J. et al. Limitations of 6-minute walk test reference values for spinal muscular atrophy. Muscle Nerve 2020;61(3):375–82. DOI: 10.1002/mus.26794

44. Krosschell K.J., Townsend E.L., Kiefer M. et al. Natural history of 10-meter walk/run test performance in spinal muscular atrophy: A longitudinal analysis. Neuromuscul Disord 2022;32(2):125–34. DOI: 10.1016/j.nmd.2021.08.010

45. Витебская А.В. Стандарты роста и развития детей от 0 до 5 лет. История создания и особенности применения. Педиатрия 2015;13(13):80–4. Vitebskaya A.V. Growth standards for children under five: History of development and specific approaches to their use. Pediatriya = Pediatrics 2015;13(13):80–4. (In Russ.).

46. Wijnhoven T.M., de Onis M., Onyango A.W. et al. Assessment of gross motor development in the WHO Multicentre Growth Reference Study. Food Nutr Bull 2004;25(1 Suppl):S37–45. DOI: 10.1177/15648265040251S105

47. WHO Multicentre Growth Reference Study Group. WHO Motor Development Study: Windows of achievement for six gross motor development milestones. Acta Paediatr Suppl 2006;450:86–95. DOI: 10.1111/j.1651-2227.2006.tb02379.x

48. WHO Multicentre Growth Reference Study Group. Assessment of sex differences and heterogeneity in motor milestone attainment among populations in the WHO Multicentre Growth Reference Study. Acta Paediatr Suppl 2006;450:66–75. DOI: 10.1111/j.1651-2227.2006.tb02377.x

49. Federal Guide to Child Neurology. Ed. by V.I. Guzeva. Moscow: MK, 2016. 656 p. (In Russ.).

50. Neurology: National Guidelines. Ed. by E.I. Gusev, A.N. Konovalov, V.I. Skvortsova. 2nd edn., revised and enlarged. Moscow: GEOTAR-Media, 2018. (In Russ.).

51. Finkel R.S., McDermott M.P., Kaufmann P. et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 2014;83(9):810–7. DOI: 10.1212/WNL.0000000000000741

52. De Sanctis R., Coratti G., Pasternak A. et al. Developmental milestones in type I spinal muscular atrophy. Neuromuscul. Disord 2016;26(11):754–9. DOI: 10.1016/j.nmd.2016.10.002

53. Kolb S.J., Coffey C.S., Yankey J.W. et al. Baseline results of the NeuroNEXT spinal muscular atrophy infant biomarker study. Ann Clin Transl Neurol 2016;3(2):132–45. DOI: 10.1002/acn3.283

54. Kolb S.J., Coffey C.S., Yankey J.W. et al. NeuroNEXT Clinical Trial Network on behalf of the NN101 SMA Biomarker Investigators. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol 2017;82(6):883–91. DOI: 10.1002/ana.25101

55. Cances C., Vlodavets D., Comi G.P. et al. Natural history of type 1 spinal muscular atrophy: A retrospective, global, multicenter study. Orphanet J Rare Dis 2022;17(1):1–11. DOI: 10.1186/s13023-022-02455-x

56. Kaufmann P., McDermott M.P., Darras B.T. et al. Observational study of spinal muscular atrophy type 2 and 3: Functional outcomes over 1 year. Arch Neurol 2011;68(6):779–86. DOI: 10.1001/archneurol.2010.373

57. Annoussamy M., Seferian A.M., Daron A. et al. Natural history of type 2 and 3 spinal muscular atrophy: 2-year NatHis-SMA study. Ann Clin Transl Neurol 2021;8(2):359–73. DOI: 10.1002/acn3.51281

58. Chabanon A., Seferian A.M., Daron A. et al. NatHis-SMA study group. Prospective and longitudinal natural history study of patients with type 2 and 3 spinal muscular atrophy: Baseline data NatHisSMA study. PLoS One 2018;13(7):e0201004. DOI: 10.1371/journal.pone.0201004

59. Zerres K., Rudnik-Schöneborn S., Forrest E. et al. A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J Neurol Sci 1997;146(1):67–72. DOI: 10.1016/s0022-510x(96)00284-5

60. Vlodavets D.V., Shchagina O.A., Polyakov A.V. et al. SMArt Retro study: A retrospective data analysis of the Russian registry of patients with spinal muscular atrophy. Nervno-myshechnye bolezni = Neuromuscular Diseases 2024;14(3):54–71. (In Russ.). DOI: 10.17650/2222-8721-2024-14-3-54-71

61. Mikhalchuk K., Shchagina O., Chukhrova A. et al. Pilot program of newborn screening for 5q spinal muscular atrophy in the Russian Federation. Int J Neonatal Screen 2023;9(2):29. DOI: 10.3390/ijns9020029

62. Voronin S.V., Zakharova E.Yu., Baydakova G.V. et al. Advanced neonatal screening for hereditary diseases in Russia: first results and future prospects. Pediatriya. Zhurnal im. G.N. Speranskogo = Pediatria. Journal named after G.N. Speransky 2024;103(1):16–29. (In Russ.). DOI: 10.24110/0031-403X-2024-103-1-16-29


Review

For citations:


Papina Yu.O., Melnik E.A., Belousova E.D., Artemyeva S.B., Monakhova A.V., Shidlovskaya O.A., Shulyakova I.V., Vlodavets D.V. Functional class criteria identification in patients with spinal muscular atrophy 5q. Neuromuscular Diseases. 2024;14(4):58-70. (In Russ.) https://doi.org/10.17650/2222-8721-2024-14-4-58-70

Views: 213


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-8721 (Print)
ISSN 2413-0443 (Online)