Spinal muscular atrophy with lower limbs phenotype: clinical and genetic description of novel mutation in the DYNC1H1 gene
https://doi.org/10.17650/2222-8721-2018-8-2-59-67
Abstract
Background. Spinal muscle atrophies (SMA) are a group of diverse heterogenous diseases caused by mutations in several dozens of genes. A rare form of autosomal dominant SMA predominantly affects muscles of the lower extremities.
The study objective is to describe clinical and genetic characteristics of Russia-living patients with SMA predominantly affecting muscles of the lower extremities caused by the DYNC1H1 gene mutation discovered by next-generation exome sequencing.
Materials and methods. To diagnose the syndrome a complex of examination techniques was used: genealogical analysis, neurological examination, electromyography, and DNA diagnostics. Changes in the nucleotide sequence in the probands and their parents identified with massive parallel sequencing were studied using direct automatic sequencing with oligonucleotide primers.
Results. Five (5) patients from 4 families with heterozygous mutations in the DYNC1H1 gene were identified. In the patients, one type of SMA predominantly affecting the lower extremities was assumed. Prior to exome sequencing, all patients were monitored for myelodysplasia diagnosis, and magnetic resonance imaging of the spine has showed protrusions and/or spondylolisthesis of the lumbar spine in 4 of the patients. The obtained results can demonstrate both hyperdiagnosis and that spinal pathology is one of the characteristic symptoms of SMA predominantly affecting the lower extremities.
Conclusion. The obtained results allow to make an assumption about a wide range of clinical polymorphisms in patients with mutations of the DYNC1H1 gene. Apart from typical clinical manifestations of SMA predominantly affecting the lower extremities, patients can be diagnosed with hereditary motor and sensory neuropathy 2, myelodysplasia, and congenital arthrogryposis which has to be taken into account during diagnostic search.
About the Authors
E. L. DadaliRussian Federation
1 Moskvorech’e St., Moscow 115478
S. S. Nikitin
Russian Federation
Build. 2, 17 Krzhizhanovskogo St., Moscow 117258
F. A. Konovalov
Russian Federation
Build. 5, 8 Podol’skoe Shosse, Moscow 115093
I. A. Akimova
Russian Federation
1 Moskvorech’e St., Moscow 115478
S. A. Korostelev
Russian Federation
Build. 5, 8 Podol’skoe Shosse, Moscow 115093
References
1. Neveling K., Martinez-Carrera L.A., Hölker I. et al. Mutations in ВICD2, wich encodes a Goldin and important motor adaptor, caust congenital autosomal-dominant spinal muscular atrophy. Am J Hum Genet 2013;92(6):946–54. DOI: 10.1016/j.ajhg.2013.04.011. PMID: 23664116.
2. Scoto M., Rossor A.M., Harms M.B. et al. Novel mutations expand the clinicalspectrumof DYNC1H1-associatedspinal muscular atrophy. Neurology 2015;84(7):668–79. DOI: 10.1212/WNL.0000000000001269. PMID: 25609763.
3. Astrea G., Brisca G., Fiorillo C. et al. Muscle MRI in TRPV4-related congenital distal SMA. Neurology 2012;78(5):364–5. DOI: 10.1212/WNL.0b013e318245295a. PMID: 22291064.
4. van der Vleuten A.J., van RavenswaaijArts C.M., Frijns C.J. et al. Localisation of the gene for a dominant congenital spinal muscular atrophy predominantly affecting the lower limbs to chromosome 12q23-q24. Eur J Hum Genet 1998;6(4):376–82. DOI: 10.1038/sj.ejhg.5200229. PMID: 9781046.
5. Allan V.J. Cytoplasmic dynein. Biochem Soc Trans 2011;39(5):1169–78. DOI: 10.1042/BST0391169. PMID: 21936784.
6. Schiavo G., Greensmith L., Hafezparast M., Fisher E.M. Cytoplasmic dynein heavy chain: the servant of many masters. Trends Neurosci 2013;36(11):641–51. DOI: 10.1016/j.tins.2013.08.001. PMID: 24035135.
7. Harms M.B., Allred P., Gardner R. et al. Dominant spinal muscular atrophy with lower extremity predominance: linkage to 14q32. Neurology 2010;75(6):539–46. DOI: 10.1212/WNL.0b013e3181ec800c. PMID: 20697106.
8. Tsurusaki Y., Saitoh S., Tomizawa K. et al. A DYNC1H1 mutation causes a dominant spinal muscular atrophy with lower extremity predominance. Neurogenetics 2012;13(4):327–32. DOI: 10.1007/s10048-012-0337-6. PMID: 22847149.
9. Willemsen M.H., Vissers L.E., Willemsen M.A. et al. Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects. J Med Genet 2012;49(3):179–83. DOI: 10.1136/jmedgenet-2011-100542. PMID: 22368300.
10. Poirier K., Lebrun N., Broix L. et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet 013;45(6). DOI: 10.1038/ng.2613. PMID: 23603762.
11. Fiorillo C., Moro F., Yi J. et al. Novel dynein DYNC1H1 neck and motor domain mutations link distal spinal muscular atrophy and abnormal cortical development. Hum Mutat 2014;35(3):298–302. DOI: 10.1002/humu.22491. PMID: 24307404.
12. Weedon M.N., Hastings R., Caswell R. et al. Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot–Marie– Tooth disease. Am J Hum Genet 2011;89(2):308–12. DOI: 10.1016/j.ajhg.2011.07.002. PMID: 21820100.
13. Gelineau-Morel R., Lukacs M., Weave K.N. et al. Stottmann congenital cataracts and gut dysmotility in a DYNC1H1 dyneinopathy patient. Genes (Basel) 2016;7(10):85. DOI: 10.3390/genes7100085. PMID: 27754416.
14. Strickland A.V., Schabhuttl M., Offenbacher H. et al. Mutation screen reveals novel variants and expands the phenotypes associated with DYNC1H1. J Neurol 2015;262(9):2124–34. DOI: 10.1007/s00415-015-7727-2. PMID: 26100331.
15. Beecroft S.J., McLean C.A., Delatycki M.B. et al. Expanding the phenotypic spectrum associated with mutations of DYNC1H1. Neuromuscul Disord 2017;27(7):607–15. DOI: 10.1016/j.nmd.2017.04.011. PMID: 28554554.
16. Hoang H.T., Schlager M.A., Carter A.P., Bullock S.L. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein-dynactin-cargo adaptor complexes. Proc Natl Acad Sci USA 2017;114(9):E1597–606. DOI: 10.1073/pnas.1620141114. PMID: 28196890.
17. Lipka J., Kuijpers M., Jaworski J., Hoogenraad C.C. Mutations in cytoplasmic dynein and its regulators cause malformations of cortical development and neurodegenerative diseases. Biochem Soc Trans 2013;41(6):1605–12. DOI: 10.1042/BST20130188. PMID: 24256262..
18. Punetha J., Monges S., Franchi M.E. et al. Exome sequencing identifies DYNC1H1 variant associated with vertebral abnormality and spinal muscular atrophy with lower extremity predominance. Pediatr Neurol 2015;52(2):239–44. DOI: 10.1016/j.pediatrneurol.2014.09.003. PMID: 25484024.
19. Mercuri E., Messina S., Kinali M. et al. Congenital form of spinal muscular atrophy predominantly affecting the lower limbs: a clinical and muscle MRI study. Neuromuscul Disord 2004;14(2):125–9. DOI: 10.1016/j.nmd.2003.09.005. PMID: 14733958.
20. Antoniadi T., Buxton C., Dennis G. et al. Application of targeted multi-gene panel testing for the diagnosis of inherited peripheral neuropathy provides a high diagnostic yield with unexpected phenotypegenotype variability. BMC Med Genet 2015;16:84. DOI: 10.1186/s12881-0150224-8. PMID: 26392352.
21. Chan S., Ip J., Mak C. et al. Lower extremity predominance spinal muscular atrophy by DYNC1H1 mutation. Conference: 29th Annual Scientific Meeting of the Hong Kong Neurological Society. Hong Kong, 2016.
22. Peeters K., Bervoets S., Chamova T. et al. Novel mutations in the DYNC1H1 tail domain refine the genetic and clinical spectrum of dyneinopathies. Hum Mutat 2015;36(3):287–91. DOI: 10.1002/ humu.22744. PMID: 25512093.
23. Niu Q., Wang X., Shi M., Jin Q. A novel DYNC1H1 mutation causing spinal muscular atrophy with lower extremity predominance. Neurol Genet 2015;1(2):e20. DOI: 10.1212/NXG.0000000000000017. PMID: 27066557.
24. Ding D., Chen Z., Li K. et al. Identification of a de novo DYNC1H1 mutation via WES according to published guidelines. Sci Rep 2016;6:20423. DOI: 10.1038/srep20423. PMID: 26846447.
Review
For citations:
Dadali E.L., Nikitin S.S., Konovalov F.A., Akimova I.A., Korostelev S.A. Spinal muscular atrophy with lower limbs phenotype: clinical and genetic description of novel mutation in the DYNC1H1 gene. Neuromuscular Diseases. 2018;8(2):59-67. (In Russ.) https://doi.org/10.17650/2222-8721-2018-8-2-59-67