Preview

Neuromuscular Diseases

Advanced search

Infantile and early childhood onset of mitochondrial myopathy due to mutations in the TK2 gene with a phenotype of spinal muscular atrophy 5q: the first cases in Russia

https://doi.org/10.17650/2222-8721-2019-9-3-57-76

Abstract

Introduction. Mitochondrial myopathy with thymidine kinase 2 deficiency and spinal muscular atrophy 5q (SMA-5q) are two potentially curable hereditary diseases with different levels of damage to the neuromuscular system and etiology. Early childhood forms have a similar phenotype and are difficult for differential diagnosis.

The aim of the study — the description of the clinical and paraclinical characteristics of the mitochondrial myopathy with TK2 deficiency and informing health care specialists about the possibility of optimizing differential diagnosis.

Materials and methods. This study involved patients with a previously excluded by molecular genetic method a spinal muscular atrophy 5q diagnosis. Clinical and paraclinical descriptions are presented for 5 patients from 3 families. In addition, 96 patient samples were obtained from the archive of the Research Center for Medical Genetics. The diagnosis based on the clinical and paraclinical features of the disease and the detection of mutations in TK2 gene by sequencing of the NGS panel or TK2 gene directly.

Results. Eight patients with mitochondrial myopathy with TK2 from 5 unrelated families have been diagnosed. Three of them have been found retrospectively by analyze of 96 spinal muscular atrophy 5q negative samples.

Conclusions. Clinical and molecular genetic characteristics of mitochondrial myopathy with TK2 are presented. The feasibility of differential diagnosis of this rare myopathy with other neuromuscular diseases, including such frequent as spinal muscular atrophy 5q, is shown. The study revealed four previously undescribed mutations in the TK2 gene (c.169G>A (p.Gly57Ser), c.310C>T (p.Arg104Cys), c.338T>A (p.Val113Glu), c.655T>C(p.Trp219Arg)).

About the Authors

S. A. Kurbatov
Voronezh Regional Clinical Consulting and Diagnostic Center; Association of Neuromuscular Disorders Specialists, Medical Center “Practical Neurology
Russian Federation

5a Lenina Sq., Voronezh 394018; Build. 2, 17 Krzhizhanovskogo St., Moscow 117258



P. G. Tsygankova
Hereditary metabolic diseases laboratory, Reseasrch Center of Medical Genetics
Russian Federation

1 Moskvorech’e St., Moscow 115478



K. Yu. Mollaeva
Dagestan State Medical University, Ministry of Health of Russia
Russian Federation

Department of Neurology

3 Pirogov St., Makhachkala 367000



I. O. Bychkov
Hereditary metabolic diseases laboratory, Reseasrch Center of Medical Genetics
Russian Federation

1 Moskvorech’e St., Moscow 115478



Yu. S. Itkis
Hereditary metabolic diseases laboratory, Reseasrch Center of Medical Genetics
Russian Federation

1 Moskvorech’e St., Moscow 115478



V. V. Zabnenkova
Reseasrch Center of Medical Genetics
Russian Federation

DNA diagnostics laboratory

1 Moskvorech’e St., Moscow 115478



Z. R. Umakhanova
Dagestan State Medical University, Ministry of Health of Russia
Russian Federation

Department of Neurology

3 Pirogov St., Makhachkala 367000



L. G. Geybatova
Dagestan State Medical University, Ministry of Health of Russia
Russian Federation

Department of Neurology

3 Pirogov St., Makhachkala 367000



E. Yu. Zakharova
Hereditary metabolic diseases laboratory, Reseasrch Center of Medical Genetics
Russian Federation

1 Moskvorech’e St., Moscow 115478



References

1. Alberio S., Mineri R., Tiranti V., Zeviani M. Depletion of mtDNA: syndromes and genes. Mitochondrion 2007;7:6-12. PMID: 17280874. DOI: 10.1016/j.mito.2006.11.010.

2. Saada A., Shaag A., Mandel H. et al. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet 2001;29:342-4. PMID: 11687801. DOI: 10.1038/ng751.

3. Mancuso M., Filosto M., Bonilla E. et al. Mitochondrial myopathy of childhood associated with mitochondrial DNA depletion and a homozygous mutation (T77M) in the TK2 gene. Arch Neurol 2003;60:1007-9. DOI: 10.1001/archneur.60.7.1007.

4. Wang J., Kim E., Dai H. et al. Clinical and molecular spectrum of thymidine kinase 2-related mtDNA maintenance defect. Mol Genet Metab 2018;124(2):124—30. PMID: 29735374. DOI: 10.1016/j.ymgme.2018.04.012.

5. Garone C., Taylor R., Nascimento A. et al. Retrospective natural history of thymidine kinase 2 deficiency. J Med Genet 2018;55(8):515—21. PMID: 29602790. DOI: 10.1136/jmedgenet-2017-105012.

6. Mercuri E., Finkel R., Muntoni F., et al. SMA Care Group. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 2018;28(2):103—15. PMID: 29602790. DOI: 10.1016/j.nmd.2017.11.005.

7. Finkel R., Mercuri E., Meyer O. et al. SMA Care group. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord 2018;28(3):197—207. PMID: 29305137. DOI: 10.1016/j.nmd.2017.11.004.

8. Oskoui M., Davidzon G., Pascual J. et al. Clinical Spectrum of Mitochondrial DNA Depletion Due to Mutations in the Thymidine Kinase 2 Gene. Arch Neurol 2006;63(8):1122—6. PMID: 16908738. DOI: 10.1001/archneur.63.8.1122.

9. Mendell J., Al-Zaidy S., Shell R., et al. Single-dose gene replacement therapy for spinal muscular atrophy. N Engl J Med 2017;377:1713-22. PMID: 29091557. DOI: 10.1056/NEJMoa1706198.

10. Dominguez-Gonzalez C., Madruga-Garrido M., Mavillard F. et al. Deoxynucleoside therapy for thymidine kinase 2-deficient myopathy. Ann Neurol 2019;86(2):293-303. PMID: 31125140. DOI: 10.1002/ana.25506.

11. Pena S., Iyengar R., Eshraghi R. et al. Gene therapy for neurological disorders: challenges and recent advancements J Drug Target 2019;11:1-18. PMID: 31195838. DOI: 10.1080/1061186X.2019.1630415.

12. Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17(5):405—24. PMID: 25741868. DOI: 10.1038/gim.2015.30.

13. Lopez-Gomez C., Levy R., Sanchez-Quintero M. et al. Deoxycytidine and deoxythymidine treatment for thymidine kinase 2 deficiency. Ann Neurol 2017;81(5):641 — 52. PMID: 28318037. DOI: 10.1002/ana.24922.

14. Spinal muscular atrophy, type II; SMA2. URL: https://omim.org/entry/253550

15. Rudnik-Schoneborn S., Lutzenrath S., Borkowska J. et al. Analysis of creatine kinase activity in 504 patients with proximal spinal muscular atrophy types I—III from the point of view of progression and severity. European neurology 1998;39(3):154—62. PMID: 9605392. DOI:10.1159/000007926.

16. Dominguez-Gonzalez C., Hernandez-Lain A., Rivas E. et al. Late-onset thymidine kinase 2 deficiency: a review of 18 cases. Orphanet J Rare Dis 2019;14(1):100. PMID: 31060578. DOI: 10.1186/s13023-019-1071-z.

17. Rao V., Kapp D., Schroth M. Gene therapy for spinal muscular atrophy: an emerging treatment option for a devastating disease. J Manag Care Spec Pharm 2018;24(12-a Suppl):S3—16. PMID: 30582825. DOI: 10.18553/jmcp.2018.24.12-a.s3.


Review

For citations:


Kurbatov S.A., Tsygankova P.G., Mollaeva K.Yu., Bychkov I.O., Itkis Yu.S., Zabnenkova V.V., Umakhanova Z.R., Geybatova L.G., Zakharova E.Yu. Infantile and early childhood onset of mitochondrial myopathy due to mutations in the TK2 gene with a phenotype of spinal muscular atrophy 5q: the first cases in Russia. Neuromuscular Diseases. 2019;9(3):67-76. (In Russ.) https://doi.org/10.17650/2222-8721-2019-9-3-57-76

Views: 1626


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-8721 (Print)
ISSN 2413-0443 (Online)