The concept of “ambulatory” and “non-ambulatory” in patients with Duchenne muscular dystrophy: definitions and criteria
https://doi.org/10.17650/2222-8721-2022-12-2-10-18
Abstract
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease due to a mutation in the gene encoding dystrophin synthesis. In patients, muscle damage and atrophy progresses, the ability to move independently decreases as well as respiratory and cardiac functions. At various stages of the disease, different methods of care and treatment of patients with DMD are used. The clinical effect of new methods of DMD target therapy may depend on the stage of development of the disease (ambulatory or non‑ambulatory). To date, there are no unified criteria for assessing the status of a patient in terms ambulatory. In clinical trials and real clinical practice, different approaches are used to assess the patient’s status. However, the conclusion about the functional capabilities is critical for patients with DMD as approaches in management of patients in ambulatory and non‑ambulatory stages differ significantly. This necessitates expert consensus to achieve consistency and avoid any of discrepancies on that issue.
The paper reviews the available published data on the concepts of “ambulatory” and “non‑ambulatory” used in clinical trials, real clinical practice, international standards and recommendations. As a conclusion of this analysis, it is proposed in real clinical practice to interpret “ambulation” in DMD patients as ability to walk without the use of assistive devices and without specifying the distance and time, and “non‑ambulation” as condition in which the patient is forced to constantly use a wheelchair both indoors and outdoors.
About the Authors
T. A. GremyakovaRussian Federation
Tatyana Andreevna Gremyakova
29 Sokolovo-Meshcherskaya St., Moscow 125466
S. V. Artemyeva
Russian Federation
2 Taldomskaya St., Moscow 125412
N. D. Vashakmadze
Russian Federation
1A Litovskiy Boulevard, Moscow 11759
I. P. Vitkovskaya
Russian Federation
1/9 4th Dobryninskiy Lane, Moscow 119049
V. I. Guzeva
Russian Federation
2 Litovskaya St., Saint Petersburg 194100
O. V. Guzeva
Russian Federation
2 Litovskaya St., Saint Petersburg 194100
L. M. Kuzenkova
Russian Federation
Build. 1, 2 Lomonosovskiy Prospect, Moscow 119991
S. V. Mikhailova
Russian Federation
117 Leninskiy Prospekt, Moscow 119571
L. P. Nazarenko
Russian Federation
10 Ushayka River Embankment, Tomsk 634050
T. M. Pervunina
Russian Federation
2 Akkuratova St., Saint Petersburg 197341
N. L. Pechatnikova
Russian Federation
1/9 4th Dobryninskiy Lane, Moscow 119049
T. V. Podkletnova
Russian Federation
Build. 1, 2 Lomonosovskiy Prospect, Moscow 119991
G. E. Sakbaeva
Russian Federation
15 Marshala Timoshenko St., Moscow 121359
A. A. Stepanov
Russian Federation
15 Marshala Timoshenko St., Moscow 121359
V. M. Suslov
Russian Federation
2 Litovskaya St., Saint Petersburg 194100
O. I. Gremyakova
Russian Federation
29 Sokolovo-Meshcherskaya St., Moscow 125466
N. I. Shakhovskaya
Russian Federation
1 Ivana Susanina St., Moscow 127486
S. S. Nikitin
Russian Federation
1 Moskvorechye St., Moscow 115522
References
1. Birnkrant D.J., Bushby K., Bann C.M. et al. DMD Care Considerations Working Group. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 2018;17(3):251–67. DOI: 10.1016/S1474-4422(18)30024-3.
2. Guiraud S., Chen H., Burns D.T., Davies K.E. Advances in genetic therapeutic strategies for Duchenne muscular dystrophy. Exp Physiol 2015;100:1458–67. DOI: 10.1113/EP085308.
3. Van Ruiten H., Bushby K., Guglieri M. State of the art advances in Duchenne muscular dystrophy. EMJ 2017;2:90–9.
4. Guideline on the clinical investigation of medicinal products for the treatment of Duchenne and Becker muscular dystrophy. 17 December 2015. EMA/ CHMP/236981/2011. P. 2.
5. Bushby K., Finkel R., Birnkrant D.J. et al. DMD Care Considerations Working Group. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 2010;9(1):77–93. DOI: 10.1016/S1474-4422(09)70271-6.
6. Osorio N.A., Cantillo M.J., Salas C.A. et al. Consensus on the diagnosis, treatment and follow-up of patients with Duchenne muscular dystrophy. Neurologia 2019;34(7):469–81. DOI: 10.1016/j.nrl.2018.01.001.
7. Araujo A.P.Q.C., Carvalho A.A.S., Cavalcanti E.B.U. et al. Brazilian consensus on Duchenne muscular dystrophy. Part 1: diagnosis, steroid therapy and perspectives. Arq Neuropsiquiatr 2017;75(8):104–13. DOI: 10.1590/0004-282x20170112.
8. The Diagnosis and Management of Duchenne Muscular Dystrophy. Available at: https://muscle.ca/wpcontent/uploads/2019/09/DMDstandardsofcare-EN.pdf.
9. Guideline on the clinical investigation of medicinal products for the treatment of Duchenne and Becker muscular dystrophy. 17 December 2015. EMA/ CHMP/236981/2011. P. 9.
10. National Institute for Health and Care Excellence. Ataluren for treating Duchenne muscular dystrophy with a nonsense mutation in the dystrophin gene (HST3). Available at: https://www.nice.org.uk/guidance/hst3/resources/atalurenfor-treating-duchenne-musculardystrophy-with-a-nonsense-mutation-inthe-dystrophin-gene-pdf-1394899207621.
11. Duchenne Muscular Dystrophy and Related Dystrophinopathies: Developing Drugs for Treatment Guidance for Industry”. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER) 2018. Available at: https://www.fda.gov/media/92233/download.
12. Pettygrove S., Lu Z., Andrews J.G. et al. Sibling concordance for clinical features of Duchenne and Becker muscular dystrophies. Muscle Nerve 2014;49(6):814–21. DOI: 10.1002/mus.24078.
13. Kim S., Zhu Y., Romitti P.A. et al. Associations between timing of corticosteroid treatment initiation and clinical outcomes in Duchenne muscular dystrophy. Neuromusc Dis 2017;27(8):730–7. DOI: 10.1016/j.nmd.2017.05.019.
14. Marden J.R., Freimark J., Yao Z. et al. Real-world outcomes of long-term prednisone and deflazacort use in patients with Duchenne muscular dystrophy: experience at a single, large care center. J Compar Effec Res 2020;9(3):177–89. DOI: 10.2217/cer-2019-0170.
15. McDonald C.M., Henricson E.K., Abresch R.T. et al. CINRG Investigators The cooperative international neuromuscular research group Duchenne natural history study – a longitudinal investigation in the era of glucocorticoid therapy: Design of protocol and the methods used. Muscle Nerve 2013;48(1):32–54. DOI: 10.1002/mus.23807.
16. Wang R., Barthelemy T.F., Martin A.S. et al. DMD genotype correlations from the Duchenne Registry: Endogenous exon skipping is a factor in prolonged ambulation for individuals with a defined mutation subtype. Hum Mut 2018;39(9):1193–202. DOI: 10.1002/humu.23561.
17. Servais L., Deconinck N., Moraux A. et al. Innovative methods to assess upper limb strength and function in nonambulant Duchenne patients. Neuromusc Dis 2013;23(2):139–48. DOI: 10.1016/j.nmd.2012.10.022.
18. Vuillerot C., Girardot F., Payan C. et al. Monitoring changes and predicting loss of ambulation in Duchenne muscular dystrophy with the Motor Function Measure. Dev Med Child Neurol 2009;52(1):60–5. DOI: 10.1111/j.1469-8749.2009.03316.x.
19. Steffensen B.F., Lyager S., Werge B. et al. Physical capacity in non-ambulatory people with Duchenne muscular dystrophy or spinal muscular atrophy: a longitudinal study. Dev Med Child Neurol 2002;44(9):623–32. DOI: 10.1017/s0012162201002663.
20. Naarding K.J., Harmen R., Erik W. et al. MRI vastus lateralis fat fraction predicts loss of ambulation in Duchenne muscular dystrophy. Neurology 2020;94(13): E1386–E1394. DOI: 10.1212/WNL.0000000000008939.
21. Connolly A.M., Malkus E.C., Mendell J.R. et al. Outcome reliability in non-ambulatory boys/men with Duchenne muscular dystrophy. Muscle Nerve 2015;51(4):522–32. DOI: 10.1002/mus.24346.
22. NCT01098708. Available at: https://clinicaltrials.gov/ct2/show/NCT01098708.
23. Alman B.A., Raza S.N., Biggar W.D. Steroid treatment and the development of scoliosis in males with Duchenne muscular dystrophy. J Bone Joint Surg 2004;86-A(3):519–24. DOI: 10.2106/00004623-20040300000009.
24. Kinali M., Main M., Eliahoo J. et al. Predictive factors for the development of scoliosis in Duchenne muscular dystrophy. Eur J Paediatric Neurol 2007;11(3):160–6. DOI: 10.1016/j.ejpn.2006.12.002.
25. Ricotti V., Ridout D.A., Scott E. et al. NorthStar Clinical Network. Long-term benefits and adverse effects of intermittent versus daily glucocorticoids in boys with Duchenne muscular dystrophy. J Neurol Neurosurg Psychiatr, 2013;84(6):698–705. DOI: 10.1136/jnnp-2012-303902.
26. Mendell J.R., Goemans N., Lowes L.P. et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 2016;79(2):257–71. DOI: 10.1002/ana.24555.
27. Humbertclaude V., Hamroun D., Bezzou K. et al. Motor and respiratory heterogeneity in Duchenne patients: Implication for clinical trials. Eur J Paediatric Neurol 2012;16(2):149–60. DOI: 10.1016/j.ejpn.2011.07.001.
28. Goemans N., Signorovitch J., Sajeev G. et al. P.202A composite prognostic score for time to loss of walking ability in Duchenne muscular dystrophy (DMD). Neuromusc Dis 2019;29:S108. DOI: 10.1016/j.nmd.2019.06.257.
29. Deighton A., Szabo S., Salhany R. et al. Pro63 the natural history of Duchenne muscular dystrophy in the corticosteroid era: a systematic review of studies from Canada and the US. Value Health 2019;22:S852. DOI: 10.1016/j.jval.2019.09.2393.
30. Szabo A., Szabo S., Gooch K. et al. Pro65 variability in age at loss of ambulation by genotype among boys with Duchenne muscular dystrophy. Value Health 2019;22:S853. DOI: 10.1016/j.jval.2019.09.2395.
31. Ryder S., Leadley R.M., Armstrong N. et al. The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet J Rare Dis 2017;12:79. DOI: 10.1186/s13023-017-0631-3.
32. Bushby K., Finkel R., Wong B. et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 2014;50(4):477–87. DOI: 10.1002/mus.24332.
33. McDonald C.M., Campbell C., Torricelli R.E. et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017;390(10101):1489–98. DOI: 10.1016/S0140-6736(17)31611-2.
34. Long-Term Outcomes of Ataluren in Duchenne Muscular Dystrophy, 2020. ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT03179631.
35. McDonald C.M., Muntoni F., Penematsa V. et al. Ataluren delays loss of ambulation and respiratory decline in nonsense mutation Duchenne muscular dystrophy patients. J Compar Effect Res 2022;11(3): 139–55. DOI: 10.2217/cer-2021-0196.
36. Muntoni F., Desguerre I., Guglieri M. et al. Ataluren use in patients with nonsense mutation Duchenne muscular dystrophy: patient demographics and characteristics from the STRIDE Registry. J Compar Effect Res 2019;8(14):1187–200. DOI: 10.2217/cer-2019-0086.
37. Khan N., Eliopoulos H., Han L. et al. Eteplirsen investigators and the CINRG DNHS investigators. Eteplirsen treatment attenuates respiratory decline in ambulatory and non-ambulatory patients with Duchenne muscular dystrophy. J Neuromusc Dis 2019;6:213–25. DOI: 10.3233/JND-180351.
38. NCT01396239. Available at: https://clinicaltrials.gov/ct2/show/NCT01396239.
39. NCT01540409. Available at: https://clinicaltrials.gov/ct2/show/NCT01540409.
40. NCT02255552. Available at: https://clinicaltrials.gov/ct2/show/NCT02255552.
41. NCT02500381. Available at: https://clinicaltrials.gov/ct2/show/NCT02500381.
42. NCT04060199. Available at: https://clinicaltrials.gov/ct2/show/NCT04060199.
43. NCT04768062. Available at: https://clinicaltrials.gov/ct2/show/NCT04768062.
44. NCT04956289. Available at: https://clinicaltrials.gov/ct2/show/NCT04956289.
45. Ataluren. Available at: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=63d61549-3c36-4239-9bbe-3913ff25b3ef&t=https://medum.ru/ataluren.
46. VYONDYS 53 (golodirsen) injection label. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211970s000lbl.pdf.
47. Highlights of prescribing information – Viltolarsen. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212154s000lbl.pdf.
48. AMONDYS 45 (casmersen) injection label. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/213026lbl.pdf.
Review
For citations:
Gremyakova T.A., Artemyeva S.V., Vashakmadze N.D., Vitkovskaya I.P., Guzeva V.I., Guzeva O.V., Kuzenkova L.M., Mikhailova S.V., Nazarenko L.P., Pervunina T.M., Pechatnikova N.L., Podkletnova T.V., Sakbaeva G.E., Stepanov A.A., Suslov V.M., Gremyakova O.I., Shakhovskaya N.I., Nikitin S.S. The concept of “ambulatory” and “non-ambulatory” in patients with Duchenne muscular dystrophy: definitions and criteria. Neuromuscular Diseases. 2022;12(2):10-18. (In Russ.) https://doi.org/10.17650/2222-8721-2022-12-2-10-18