Preview

Нервно-мышечные болезни

Расширенный поиск

Современное представление о химиоиндуцированной полинейропатии (обзор литературы)

https://doi.org/10.17650/2222-8721-2023-13-1-10-21

Аннотация

Обзор посвящен химиоиндуцированной полинейропатии – частому нежелательному явлению терапии злокачественных новообразований, которое снижает качество жизни пациентов и может приводить к изменению тактики ведения: модификации дозы, отсрочке введения препарата и даже полному прекращению лечения, что ставит под угрозу жизнь пациента. В основе химиоиндуцированного повреждающего действия периферических нервов лежат разные механизмы в зависимости от вида цитотоксического агента. Наиболее нейротоксичными являются препараты платины, таксаны, алкалоиды барвинка, бортезомиб и талидомид. В результате нейротоксического воздействия возникает повреждение тонких и толстых волокон периферических нервов. Однако до сих пор остается загадкой, почему у одного пациента развиваются проявления нейротоксичности, а у другого – нет. Перед современным медицинским сообществом по-прежнему остро стоит вопрос изучения механизмов развития, факторов риска, а также поиска биомаркеров и разработки методов профилактики, лечения химиоиндуцированной полинейропатии. Обобщены результаты исследований по механизму возникновения, клинике, диагностике, профилактике и лечению химиоиндуцированных полинейропатий.

Об авторах

О. А. Тихонова
ФГАОУ ВО «Балтийский федеральный университет им. Иммануила Канта»
Россия

Ольга Алексеевна Тихонова,

236016 Калининград, ул. Александра Невского, 14



Д. С. Дружинин
ФГБОУ ВО «Ярославский государственный медицинский университет» Минздрава России
Россия

150000 Ярославль, ул. Революционная, 5



А. М. Тынтерова
ФГАОУ ВО «Балтийский федеральный университет им. Иммануила Канта»
Россия

236016 Калининград, ул. Александра Невского, 14



И. В. Реверчук
ФГАОУ ВО «Балтийский федеральный университет им. Иммануила Канта»
Россия

236016 Калининград, ул. Александра Невского, 14



Список литературы

1. Miller K.D., Nogueira L., Mariotto A. B. et al. Cancer treatment and survivorship statistics, 2019. Cancer J Clin 2019;69(5):363–85. DOI: 10.3322/caac.21565

2. Molassiotis A., Cheng H. L., Lopez V. et al. Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer 2019;19(1):1–19. DOI: 10.1186/s12885-019-5302-4

3. Banach M., Juranek J.K., Zygulska A.L. Chemotherapy-induced neuropathies – a growing problem for patients and health care providers. Brain Behav 2017;7(1):e00558. DOI: 10.1002/brb3.558

4. Cavaletti G., Alberti P., Argyriou A.A. et al. Chemotherapy-induced peripheral neurotoxicity: a multifaceted, still unsolved issue. J Periph Nerv Sys 2019;24:S6–S12. DOI: 10.1111/jns.12337

5. Seretny M., Currie G.L., Sena E.S., et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 2014;155(12):2461–70. DOI: 10.1016/j.pain.2014.09.020

6. Jordan B., Jahn F., Sauer S. et al. Prevention and management of chemotherapy-induced polyneuropathy. Breast Care 2019;14(2): 79–84. DOI: 10.1159/000499599

7. Ghoreishi Z., Keshavarz S., Asghari Jafarabadi M. et al. Risk factors for paclitaxel-induced peripheral neuropathy in patients with breast cancer. BMC Cancer 2018;18(1):1–6. DOI: 10.1186/s12885-018-4869-5

8. Hershman D.L., Till C., Wright J.D. et al. Comorbidities and risk of chemotherapy-induced peripheral neuropathy among participants 65 years or older in southwest oncology group clinical trials. J Clin Oncol 2016;34(25):3014. DOI: 10.1200/JCO.2015.66.2346

9. Saito Y., Takekuma Y., Shinagawa N. et al. Evaluation of risk factors associated with carboplatin and nab-paclitaxel treatment suspension in patients with non-small cell lung cancer. Sup Care Cancer 2022;30(5):4081–8. DOI: 10.1007/s00520-021-06757-x

10. Shah A., Hoffman E.M., Mauermann M.L. et al. Incidence and disease burden of chemotherapy-induced peripheral neuropathy in a population-based cohort. J Neurol Neurosurg Psychiatry 2018;89(6):636–41. DOI: 10.1136/jnnp-2017-317215

11. Inada M., Sato M., Morita S. et al. Associations between oxaliplatin-induced peripheral neuropathy and polymorphisms of the ERCC1 and GSTP1 genes. Int J Clin Pharmacol Ther 2010;48(11):729–34. DOI: 10.5414/cpp48729

12. Apellániz-Ruiz M., Lee M.Y., Sánchez-Barroso L. et al. Wholeexome sequencing reveals defective CYP3A4 variants predictive of paclitaxel dose-limiting neuropathy CYP3A4 variants and paclitaxel dose-limiting neuropathy. Clin Cancer Res 2015;21(2):322–8. DOI: 10.1158/1078-0432.CCR-14-1758

13. Nakamura T., Hashiguchi A., Suzuki S. et al. Vincristine exacerbates asymptomatic Charcot–Marie–Tooth disease with a novel EGR2 mutation. Neurogenetics 2012;13(1):77–82. DOI: 10.1007/s10048-012-0313-1

14. Guijosa A., Freyria A., Espinosa-Fernandez J.R. et al. Pharmacogenetics of taxane-induced neurotoxicity in breast cancer: Systematic review and meta-analysis. Clin Transl Sci 2022;15(10):2403–36. DOI: 10.1111/cts.13370

15. Argyriou A.A., Bruna J., Genazzani A.A. et al. Chemotherapyinduced peripheral neurotoxicity: management informed by pharmacogenetics. Nat Rev Neurol 2017;13(8):492–504. DOI: 10.1038/nrneurol.2017.88

16. Zajączkowska R., Kocot-Kępska M., Leppert W. et al. Mechanisms of chemotherapy-induced peripheral neuropathy. Int J Mol Sci 2019;20(6):1451. DOI: 10.3390/ijms20061451

17. Rabik C.A., Dolan M.E. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 2007;33(1):9–23. DOI: 10.1016/j.ctrv.2006.09.006

18. Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 2014;740:364–78. DOI: 10.1016/j.ejphar.2014.07.025

19. Was H., Borkowska A., Bagues A. et al. Mechanisms of chemotherapy-induced neurotoxicity. Front Pharmacol 2022;13:750507. DOI: 10.3389/fphar.2022.750507

20. Zheng H., Xiao W.H., Bennett G.J. Functional deficits in peripheral nerve mitochondria in rats with paclitaxeland oxaliplatin-evoked painful peripheral neuropathy. Exp Neurol 2011;232(2):154–61. DOI: 10.3389/fphar.2022.750507

21. Chukyo A., Chiba T., Kambe T. et al. Oxaliplatin-induced changes in expression of transient receptor potential channels in the dorsal root ganglion as a neuropathic mechanism for cold hypersensitivity. Neuropeptides 2018;67:95–101. DOI: 10.1016/j.npep.2017.12.002

22. Warwick R., Hanani M. The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur J Pain 2013;17(4):571–80. DOI: 10.1002/j.1532-2149.2012.00219.x

23. Schmitt L.I., Leo M., Kutritz A. et al. Activation and functional modulation of satellite glial cells by oxaliplatin lead to hyperexcitability of sensory neurons in vitro. Mol Cell Neurosci 2020;105:103499. DOI: 10.1016/j.mcn.2020.103499

24. Makker P.G., Duffy S.S., Lees J.G. et al. Characterisation of immune and neuroinflammatory changes associated with chemotherapy-induced peripheral neuropathy. PloS One 2017;12(1):e0170814. DOI: 10.1371/journal.pone.0170814

25. Robinson C.R., Zhang H., Dougherty P.M. Astrocytes, but not microglia, are activated in oxaliplatin and bortezomibinduced peripheral neuropathy in the rat. Neurosci 2014;274:308–17. DOI: 10.1016/j.neuroscience.2014.05.051

26. Velasco R., Bruna J. Taxane-induced peripheral neurotoxicity. Toxics 2015;3(2):152–69. DOI: 10.3390/toxics3020152

27. Xiao W.H., Zheng H., Zheng F.Y. et al. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. Neurosci 2011;199:461–9. DOI: 10.1016/j.neuroscience.2011.10.010

28. Loprinzi C.L., Reeves B.N., Dakhil S.R. et al. Natural history of paclitaxel-associated acute pain syndrome: prospective cohort study NCCTG N08C1. J Clin Oncol 2011;29(11):1472. DOI: 10.1200/JCO.2010.33.0308

29. Windebank A.J., Grisold W. Chemotherapy-induced neuropathy. J Periph Nerv Sys 2008;13(1):27–46. DOI: 10.1111/j.1529-8027.2008.00156.x

30. Triarico S., Romano A., Attinà G. et al. Vincristine-induced peripheral neuropathy (VIPN) in pediatric tumors: Mechanisms, risk factors, strategies of prevention and treatment. Int J Mol Sci 2021;22(8):4112. DOI: 10.3390/ijms22084112

31. Amirkhanloo F., Karimi G., Yousefi-Manesh H. et al. The protective effect of modafinil on vincristine-induced peripheral neuropathy in rats: A possible role for TRPA1 receptors. Basic Clin Pharmacol Toxicol 2020;127(5):405–18. DOI: 10.1111/bcpt.13454

32. Liang Y., Ma S., Zhang Y. et al. IL-1β and TLR4 signaling are involved in the aggravated murine acute graft-versus-host disease caused by delayed bortezomib administration. J Immunol 2014;192(3):1277–85. DOI: 10.4049/jimmunol.1203428

33. Stockstill K., Doyle T.M., Yan X. et al. Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. J Exp Med 2018;215(5):1301–13. DOI: 10.1084/jem.20170584

34. Argyriou A.A., Iconomou G., Kalofonos H.P. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 2008;112(5):1593–9. DOI: 10.1182/blood-2008-04-149385

35. Mohty B., El-Cheikh J., Yakoub-Agha I. et al. Peripheral neuropathy and new treatments for multiple myeloma: background and practical recommendations. Haematologica 2010;95(2):311. DOI: 10.3324/haematol.2009.012674

36. Ventzel L., Jensen A.B., Jensen A.R. et al. Chemotherapy-induced pain and neuropathy: a prospective study in patients treated with adjuvant oxaliplatin or docetaxel. Pain 2016;157(3):560–8. DOI: 10.1097/j.pain.0000000000000404

37. Ta L.E., Espeset L., Podratz J. et al. Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum – DNA binding. Neurotoxicology 2006;27(6):992–1002. DOI: 10.1016/j.neuro.2006.04.010

38. Lucchetta M., Lonardi S., Bergamo F. et al. Incidence of atypical acute nerve hyperexcitability symptoms in oxaliplatin-treated patients with colorectal cancer. Cancer Chemother Pharmacol 2012;70(6):899–902. DOI: 10.1007/s00280-012-2006-8

39. Brewer J.R., Morrison G., Dolan M.E. et al. Chemotherapyinduced peripheral neuropathy: Current status and progress. Gynecol Oncol 2016;140(1):176–83. DOI: 10.1016/j.ygyno.2015.11.011

40. Cavaletti G., Nobile-Orazio E. Bortezomib-induced peripheral neurotoxicity: still far from a painless gain. Haematologica 2007;92(10):1308–10. DOI: 10.3324/haematol.11752

41. Kolb N.A., Smith A.G., Singleton J.R. et al. The association of chemotherapy-induced peripheral neuropathy symptoms and the risk of falling. JAMA Neurol 2016;73(7):860–6. DOI: 10.1001/jamaneurol.2016.0383

42. Common terminology criteria for adverse events (CTCAE) version 5.0. National Institutes of Health Bethesda, 2017. Available at: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf.

43. Frigeni B., Piatti M., Lanzani F. et al. Chemotherapy-induced peripheral neurotoxicity can be misdiagnosed by the National Cancer Institute Common Toxicity scale. J Periph Nerv Sys 2011;16(3):228–36. DOI: 10.1111/j.1529-8027.2011.00351.x

44. Postma T.J., Aaronson N.K., Heimans J.J. et al. The development of an EORTC quality of life questionnaire to assess chemotherapy-induced peripheral neuropathy: the QLQ-CIPN20. Eur J Cancer 2005;41(8):1135–9. DOI: 10.1016/j.ejca.2005.02.012

45. Pachman D.R., Qin R., Seisler D.K. et al. Clinical course of oxaliplatin-induced neuropathy: results from the randomized phase III trial N08CB (Alliance). J Clin Oncol 2015;33(30):3416. DOI: 10.1200/JCO.2014.58.8533

46. Sun B., Li Y., Liu L. et al. SFN-SIQ, SFNSL and skin biopsy of 55 cases with small fibre involvement. Int J Neurosci 2018;128(5):442–8. DOI: 10.1080/00207454.2017.1398152

47. Lukashenko M.V., Gavrilova N.Y., Bregovskaya A.V. et al. Corneal confocal microscopy in the diagnosis of small fiber neuropathy: faster, easier, and more efficient than skin biopsy? Pathophysiology 2021;29(1):1–8. DOI: 10.3390/pathophysiology29010001

48. Burgess J., Ferdousi M., Gosal D. et al. Chemotherapy-induced peripheral neuropathy: epidemiology, pathomechanisms and treatment. Oncol Ther 2021;9(2):385–450. DOI: 10.1007/s40487-021-00168-y

49. Thaisetthawatkul P., Fernandes Filho J.A., Herrmann D.N. Contribution of QSART to the diagnosis of small fiber neuropathy. Muscle Nerve 2013;48(6):883–8. DOI: 10.1002/mus.23891

50. Raasing L.R., Vogels O. J., Veltkamp M. et al. Current view of diagnosing small fiber neuropathy. J Neuromusc Dis 2021;8(2):185–207. DOI: 10.3233/JND-200490

51. Terkelsen A.J., Karlsson P., Lauria G. et al. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol 2017;16(11):934–44. DOI: 10.1016/S1474-4422(17)30329-0

52. Illias A.M., Gist A. C., Zhang H. et al. Chemokine CCL2 and its receptor CCR2 in the dorsal root ganglion contribute to oxaliplatininduced mechanical hypersensitivity. Pain 2018;159(7):1308. DOI: 10.1097/j.pain.0000000000001212

53. Wang X.M., Lehky T.J., Brell J.M. et al. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 2012;59(1):3–9. DOI: 10.1016/j.cyto.2012.03.027

54. Fumagalli G., Monza L., Cavaletti G. et al. Neuroinflammatory process involved in different preclinical models of chemotherapyinduced peripheral neuropathy. Front Immunol 2021;11:626687. DOI: 10.3389/fimmu.2020.626687

55. Delaby C., Alcolea D., Carmona-Iragui M. et al. Differential levels of neurofilament light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders. Sci Rep 2020;10(1):1–8. DOI: 10.1038/s41598-020-66090-x

56. Huehnchen P., Schinke C., Bangemann N. et al. Neurofilament proteins as a potential biomarker in chemotherapy-induced polyneuropathy. JCI Insight 2022;7(6). DOI: 10.1172/jci.insight.154395

57. Szudy-Szczyrek A., Mlak R., Bury-Kamińska M. et al. Serum brain-derived neurotrophic factor (BDNF) concentration predicts polyneuropathy and overall survival in multiple myeloma patients. Brit J Haematol 2020;191(1):77–89. DOI: 10.1111/bjh.16862

58. De Santis S., Pace A., Bove L. et al. Patients treated with antitumor drugs displaying neurological deficits are characterized by a low circulating level of nerve growth factor. Clin Cancer Res 2000;6(1):90–5.

59. Youk J., Kim Y.S., Lim J.A. et al. Depletion of nerve growth factor in chemotherapy-induced peripheral neuropathy associated with hematologic malignancies. PLoS One 2017;12(8):e0183491. DOI: 10.1371/journal.pone.0183491

60. Majithia N., Temkin S.M., Ruddy K.J. et al. National Cancer Institute-supported chemotherapy-induced peripheral neuropathy trials: outcomes and lessons. Supp Care Cancer 2016;24(3):1439–47. DOI: 10.1007/s00520-015-3063-4

61. Smith E.M., Pang H., Cirrincione C. et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapyinduced painful peripheral neuropathy: a randomized clinical trial. JAMA 2013;309(13):1359–67. DOI: 10.1001/jama.2013.2813

62. Loprinzi C.L., Lacchetti C., Dworkin R.H. et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. ASCO 2020. DOI: 10.1200/JCO.20.01399


Рецензия

Для цитирования:


Тихонова О.А., Дружинин Д.С., Тынтерова А.М., Реверчук И.В. Современное представление о химиоиндуцированной полинейропатии (обзор литературы). Нервно-мышечные болезни. 2023;13(1):10-21. https://doi.org/10.17650/2222-8721-2023-13-1-10-21

For citation:


Tikhonova O.A., Druzhinin D.S., Tynterova A.M., Reverchuk I.V. Current understanding of chemotherapy-induced peripheral neuropathy (literature review). Neuromuscular Diseases. 2023;13(1):10-21. (In Russ.) https://doi.org/10.17650/2222-8721-2023-13-1-10-21

Просмотров: 836


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2222-8721 (Print)
ISSN 2413-0443 (Online)