Preview

Neuromuscular Diseases

Advanced search

Clinical and genetic characteristics and an algorithm for the differential diagnosis of progressive muscular dystrophies that manifest after a period of normal motor development

https://doi.org/10.17650/2222-8721-2023-13-1-44-51

Abstract

Background. Progressive muscular dystrophies (PMD) are a group of genetically heterogeneous diseases that manifest in the age range from early childhood to adulthood. Depending on the predominant topography of the muscular lesion, there are: limb-girdle, distal, oculopharyngeal, facial-shoulder-scapular-peroneal variants of PMD.

Aim. Creation of algorithms for the differential diagnosis of PMD with multiple topography of muscle lesions.

Materials and methods. We observed 192 patients aged 1.5 to 66 years with PMD with a debut after a period of normal motor development. The diagnosis was established on the basis of genealogical analysis, neurological examination, assessment of non-muscular manifestations, results of instrumental, biochemical molecular genetic studies.

Results. Four groups of patients were identified, differing in the topography of muscle damage and 19 genetic variants of PMD were diagnosed. An algorithm for diagnosing PMD that manifest after a period of normal motor development is proposed, which is based on the frequency of occurrence of individual genetic variants and their proportion in the analyzed sample, the presence of major mutations in causal genes, the features of phenotypic characteristics, the gender of the patient and the possibility of conducting etiopathogenetic therapy developed by for some genetic variants.

Conclusion. The use of the proposed algorithm in clinical practice can significantly reduce the economic and time costs for confirmatory molecular genetic diagnosis, and promptly recommend etiopathogenetic therapy for some genetic variants of this group of diseases. 

About the Authors

I. V. Sharkova
Research Center of Medical Genetics
Russian Federation

Inna Valentinovna Sharkova,

1 Moskvorechye St., Moscow 115522



E. L. Dadali
Research Center of Medical Genetics
Russian Federation

1 Moskvorechye St., Moscow 115522



References

1. Emery A.E.H. Seminar: The muscular dystrophies. Lancet 2002;359(9307):687–95. DOI: 1016/S0140-6736(02)07815-7

2. Sewry C.A. Pathological defects in congenital myopathies. Cell Motil 2008;29:231–8. DOI: 10.1007/s10974-008-9155-8

3. Schorling D., Kirschner J., Bonnemann C.G. Congenital muscular dystrophies and myopathies: an overview and update. Neuropediatrics 2017;48(4):247–61. DOI: 10.1055/s-0037-1604154

4. Muscular dystrophy syndromes. Available at: http://neuromuscular.wustl.edu/musdist/lg.html.

5. Anderson L.V., Harrison RM, Pogue R. et al. Secondary reduction in calpain 3 expression in patients with limb girdle muscular dystrophy type 2B and Miyoshi myopathy (primary dysferlinopathies). Neuromuscul Disord 2000;10(8);553–55. DOI: 10.1016/s0960-8966(00)00143-7

6. Bushby K.M. Diagnostic criteria for the limb-girdle muscular dystrophies: report of the ENMC Consortium on limb-girdle dystrophies. Neuromuscul Disord 1995(5):71–4. DOI: 10.1016/0960-8966(93)e0006-g

7. Carrie A., Piccolo F., Leturcq F. et al. Mutational diversity and hot spots in the alpha-sarcoglycan gene in autosomal recessive muscular dystrophy (LGMD2D). J Med Genet 1997;34:470–5. DOI: 10.1136/jmg.34.6.470

8. Urtasun M., Saenz A., Roudaut C. et al. Limb-girdle muscular dystrophy in Guipuzcoa (Basque Country, Spain). Brain 1998;121(9):1735–47. DOI: 10.1093/brain/121.9.1735

9. Pogoda T.V., Krakhmaleva I.N., Lipatova N.A. et al. High incidence of 550delA mutation of CAPN3 in LGMD2 patients from Russia. Hum Mutat 2000;15(3):295. DOI: 10.1002/(sici)1098- 1004(200003)15:33.0.co;2-8

10. Brockington M., Blake D. J., Prandini P. et al. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin α2 deficiency and abnormal glycosylation of α-dystroglycan. Am J Hum Gen 2001;69(6):1198–209. DOI: 10.1086/324412

11. De Paula F., Vainzof M., Passos Bueno M.R. et al. Clinical variability in calpainopathy – what makes the difference? Eur J Hum Genet 2002;10:825–32. DOI: 10.1038/sj.ejhg.5200888

12. Poppe M., Cree L., Bourke J. et al. The phenotype of limb-girdle muscular dystrophy type 2I. Neurology 2003;60(8):1246–51. DOI: 10.1212/01.wnl.0000058902.88181.3d

13. Moreira E.S., Vainzof M., Suzuki O.T. et al. Genotype-phenotype correlations in 35 Brazilian families with sarcoglycanopathies including the description of three novel mutations. J Med Genet 2003;40(2):12–20. DOI: 10.1136/jmg.40.2.e12

14. Canki-Klain N., Milic A., Kovac B. Prevalence of the 550delA mutation in calpainopathy (LGMD 2A) in Croatia. Am J Med Genet 2004;125(2):152–6. DOI: 10.1002/ajmg.a.20408

15. Walter M.C. FKRP (826C>A) frequently causes limb-girdle muscular dystrophy in German patients. J Med Gen 2004;41(4):e50. DOI: 10.1136/jmg.2003.013953

16. Hackman P., Juvonen V., Sarparanta J. et al. Enrichment of the R77C alpha-sarcoglycan gene mutation in Finnish LGMD2D patients. Muscle Nerve 2005;31(2):199–204. DOI: 10.1002/mus.20267

17. Balci B., Aurino S., Haliloglu G. et al. Calpain-3 mutations in Turkey. Eur J Pediatr 2006;165(5):293–8. DOI: 10.1007/s00431-005-0046-3

18. Mercuri E., Topaloglu H., Brockington M. et al. Spectrum of brain changes in patients with congenital muscular dystrophy and FKRP gene mutations. Arch Neurol 2006;63:251–7. DOI: 10.1001/archneur.63.2.251

19. Sveen M.L., Schwartz M., Vissing J. High prevalence and phenotype-genotype correlations of limb girdle muscular dystrophy type 2I in Denmark. Ann Neurol 2006;59: 808–15. DOI: 10.1002/ana.20824

20. Ryzhkova O.P., Bileva D.S., Dadaly E.L. et al. Clinical and genetic characteristics of limb girdle muscular dystrophy type 2a. Meditsinskaya Genetika = Medical Genetics 2010;9(11):3–10. (In Russ.)

21. Trevisan C.P., Pastorello E, Tomelleri G. et al. Genotypephenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: A model of nationwide knowledgebase. Hum Mutat 2009. DOI: 10.1002/humu

22. Nallamilli B.R., Ankala A., Hegde M. Molecular diagnosis of Duchenne muscular dystrophy. Curr Protocol Hum Genet 2014;83(9):1–29. DOI: 10.1002/0471142905.hg0925s83

23. Bladen C.L., Salgado D., Monges S. et al. The TREAT-NMD DMD global database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 2015;36(4):395–402. DOI: 10.1002/humu.22758

24. Kumar S.H., Athimoolam K., Suraj M. et al. Comprehensive genetic analysis of 961 unrelated Duchenne muscular dystrophy patients: focus on diagnosis, prevention and therapeutic possibilities. PLoS One 2020;15(6):e0232654. DOI: 10.1371/journal.pone.0232654

25. Rosalki S.B. Serum enzymes in disease of skeletal muscle. Clin Lab Med 1989;9(4):767–81.

26. Zatz M., Rapaport D., Vainzof M. et al. Serum creatine-kinase (CK) and pyruvate-kinase (PK) activities in Duchenne (DMD) as compared with Becker (BMD) muscular dystrophy. J Neurol Sci 1991;102(2):190–6. DOI: 10.1016/0022-510x(91)90068-i

27. Sharkova I.V., Dadali E.L., Ryzhkova O.P., Evdokimenkov V.N. Comparative analysis of features phenotype limb-girdle muscular dystrophy 2А and 2I types. Nervno-myshechnye Bolezni = Neuromuscular Diseases 2013;(2):39–44. (In Russ.). DOI: 10.17650/2222-8721-2015-5-3-42-49

28. Sharkova I.V., Dadali E.L., Ugarov I.V. et al. Comparative analysis of phenotypic traits in two common genetic variants of limb-girdle muscular dystrophy. Nervno-myshechnye Bolezni = Neuromuscular Diseases 2015;5(3):42–9. (In Russ.). DOI: 10.17650/2222-8721-2015-5-3-42-48

29. Nikitin S.S., Kutsev S.I., Basargina E.N. et al. Clinical practice guidelines for delivery of healthcare to patients with Pompe disease. Nervno-myshechnye Bolezni = Neuromuscular Diseases 2016;6(1): 11–43. (In Russ.). DOI: 10.17650/2222-8721-2016-6-1-11

30. Li H., Chen Q., Liu F. et al. Clinical and molecular genetic analysis in Chinese patients with distal myopathy with rimmed vacuoles. J Hum Genet 2011;56:335–8. DOI: 10.1038/jhg.2011.15

31. Mori-Yoshimura M., Oya Y., Yajima H. et al. GNE myopathy: a prospective natural history study of disease progression. Neuromuscul Disord 2014;24(5):380–6. DOI: 10.1016/j.nmd.2014.02.008

32. Chamova T., Guergueltcheva V., Gospodinova M. et al. GNE myopathy in Roma patients homozygous for the p.I618T founder mutation. Neuromuscul Disord 2015;25(9):713–8. DOI: 10.1016/j.nmd.2015.07.004

33. Pogoryelova O., Wilson I.J., Mansbach H. et al. GNE genotype explains 20 % of phenotypic variability in GNE myopathy. Neurol Genet 2019;5:e308. DOI: 10.1212/NXG.0000000000000308

34. Park Y.E., Kim D.S., Choi Y.C., Shin J.H. Progression of GNEmyopathy based on the patient-reported outcome. J Clin Neurol 2019;15(3):275–84. DOI: 10.3988/jcn.2019.15.3.275

35. Upadhyaya M., Cooper D.N. Facioscapulohumeral muscular dystrophy: clinical medicine and molecular cell biology. Garland Science/BIOS Scientific, Abingdon Google Scholar 2004. DOI: 10.3109/9780203997352.086

36. Nikolic A., Ricci G., Sera F. et al. Clinical expression of facioscapulohumeral muscular dystrophy in carriers of 1–3 D4Z4 reduced alleles: experience of the FSHD Italian National Registry. BMJ 2016;6:e007798. DOI: 10.1136/bmjopen-2015-007798

37. Fratter C., Gorman G.S., Stewart J.D. et al. The clinical, histochemical, and molecular spectrum of PEO1 (Twinkle)-linked adPEO. Neurology 2010;74(20):1619–26. DOI: 10.1212/WNL.0b013e3181df099f

38. Tang S., Wang J., Lee N.-C. et al. Mitochondrial DNA polymerase mutations: an ever expanding molecular and clinical spectrum. J Med Genet 2011;48(10):669–81. DOI: 10.1136/jmedgenet-2011-100222

39. Orsucci D., Angelini C., Bertini E. et al. Revisiting mitochondrial ocular myopathies: a study from the Italian Network. J Neurol 2017;264(8):1777–84. DOI: 10.1007/s00415-017-8567-z

40. Rodriguez-Lopez D., Garcia-Cardaba L.M., Blazquez A. et al. Clinical, pathological and genetic spectrum in 89 cases of mitochondrial progressive external ophthalmoplegia. J Med Genet 2020;57:643–6. DOI: 10.1136/jmedgenet-2019-106649


Review

For citations:


Sharkova I.V., Dadali E.L. Clinical and genetic characteristics and an algorithm for the differential diagnosis of progressive muscular dystrophies that manifest after a period of normal motor development. Neuromuscular Diseases. 2023;13(1):44-51. (In Russ.) https://doi.org/10.17650/2222-8721-2023-13-1-44-51

Views: 671


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-8721 (Print)
ISSN 2413-0443 (Online)