LECTURES AND REVIEWS
Glucocorticoids (GCs) are often prescribed for neurologic patients. Autoimmune diseases of central and peripheral nervous system, neuromuscular disorders are associated with disability and life-threatening complications, and require long-term high-dosage administration of GCs. GC-therapy is a crucial decision to be made by a neurologist in collaboration with a patient, and requires strict observance of clear guidelines on the prevention, diagnosis and treatment of possible complications. One of the most frequent complications of GCs is osteoporosis. According to the Russian and international guidelines, all the patients must undergo preliminary and follow-up laboratory and instrumental examination, as well as administration of calcium and vitamin D during the whole period of GC-therapy. In case of a high fracture risk or if osteoporosis is diagnosed, antiresorptive therapy is indicated.
Transcranial magnetic stimulation (TMS) is a rapidly developing method of neuromodulation. The use of TMS has increased significantly in both research and clinical practice. This allows not only to better understand this method, but also assess possible risks and consequences for both healthy individuals and patients. In 1998 and 2009 safety, ethical considerations, and application guidelines for the use of TMS in clinical practice and research were published. These recommendations are now the basis for safe application of the method in clinical practice and research. Safety of brain stimulation includes several aspects: the prevention and treatment of adverse effects, the strategy of patient and stimulation protocols selection, as well as safety and monitoring procedures. The most common adverse effects of TMS include headache and neck pain, syncope, transient hearing impairment. The risk of epileptic seizureis extremely low and can be minimized by careful selection of patients and the use of safe stimulation protocols. Careful selection of patients is important, taking into account a large number of factors that influence the risk of adverse effects. These factors are considered in the questionnaires to identify limitations and absolute or relative contraindications to TMS. Another important part of TMS safety is the choice of the stimulation protocol and parameters such as intensity, frequency, duration of one train of stimuli, and the interstimulus interval. Currently, the recommended limits of stimulation parameters are covered in the safety guidelines. It is also necessary to follow the procedure, including the monitoring the patient's condition during TMS and the providing qualified assistance in case of adverse effects.
ORIGINAL REPORTS
Background. Peripheral magnetic stimulation (PMS) is applied over spinal roots, peripheral nerves, terminal motor nerve branches. PMS has been used as a method of diagnosis and treatment for two decades. Despite the considerable amount of PMS studies, there is no consensus on the approach to determine the intensity of the magnetic stimulus in the treatment stimulation, the need for the differentiated activation of the different parts of the peripheral nervous system. This was the prerequisite for carrying out this study. Objective: to investigate the PMS intensity required to activate spinal roots and terminal nerve branches, the second object was the comparison of the threshold values among volunteers. Materials and methods. Thirty four healthy subjects with no neuromuscular diseases were enrolled in the study (mean age 31.0 ± 8.6 years). PNS was applied by Magstim 200 magnetic stimulator (Great Britain). During the research the subjective threshold, the threshold of muscle contraction, the threshold of the root activation (according to motor evoked potential) were estimated. Stimulation-induced muscle activity was recorded via surface EMG system (Neurosoft, Russia) synchronized with the magnetic stimulator. Results. The analysis of data identified the significant differences (p <0.05) between the root activation and terminal nerve branches threshold values. There were no reports of gender differences between the threshold values of all investigated parameters within the group (p >0.05). There were no significant differences between right and left limbs (p >0.05) in the comparison of all parameters. Conclusion. The results of the present study can indicate the possibility of the individual approach of the determination the intensity of the magnetic stimulus for each patient. The findings of our study provide an opportunity for a better understanding of the action mechanism of PMS and can be used in order to develop the treatment algorithm for the use in the clinical settings.
Urinary disorders caused by peripheral nervous system injury are characterized by weakness of neural control of lower urinary tract. Clinical and urodynamic examination demonstrate detrusor-hyporeflexia and its reduced contractility. Magnetic stimulation influences autonomic and somatic nerves innervating pelvic organs but the mechanism of action is still unclear. This paper presents literature review on diagnostics and treatment of neurogenic urinary disorders by using magnetic stimulation and the results of our investigational study. 7 patients with neurogenic urinary retention were included in a prospective study of peripheral repetitive magnetic stimulation. Prolonged clinical improvement during the follow-up of 3 months was observed in all patients.
CONFERENCES, SYMPOSIUMS, MEETINGS
ISSN 2413-0443 (Online)